Entity

Time filter

Source Type


Goyal D.,Center for Advanced Surgeries of the Knee Joint | Goyal A.,Smt NHL Municipal Medical College | Brittberg M.,Gothenburg University
Knee Surgery, Sports Traumatology, Arthroscopy | Year: 2013

Purpose: There is an increasing use of various synthetic and biological products in orthopaedics. The use of a biological product can be a major area of concern for patients of various cultures/religions. The purpose of this work is to study various restrictions in different faiths and their compatibility with available products focused on cartilage repair. Methods: A systematic search in several databases, CINAHL, EMBASE, Global health, PubMed, MEDLINE and the Cochrane collaboration, was performed to find out various religious beliefs of some major religions regarding the use of animal products. Hindu, Muslim, Christian, Jewish and Buddhist faiths were studied to find out whether animal-derived surgical implants are permitted. Major religious scholars were asked about their opinions, and guidelines related to human/religious ethics were evaluated. A market survey was carried out to find out biological contents of various products and their compatibility. Results: Jews and Muslims have religious restrictions for porcine products, while Hindus reject bovine products. Vegetarian Hindus reject usage of any animal product. Most Christians do not have any restrictions except those who follow vegetarian dietary regulations. Though there is no prohibition for the use of animal products in Buddhism, a code of non-violence to animals is being followed. However, difference of opinion exists about interpretation of these dietary guidelines for surgical usage amongst various scholars. Conclusion: Products of biological origin have a definite restriction for various religions, with few exceptions. Surgeons should know the source of the product and should be aware of the basic requirements of the patient's faith. Patient should be informed about the source of the product and alternative if available, and an informed consent may be considered. Level of evidence: Type of study, Level V. © 2012 Springer-Verlag Berlin Heidelberg. Source


Patel K.,Smt NHL Municipal Medical College
Indian Journal of Dermatology, Venereology and Leprology | Year: 2010

McCune-Albright syndrome (MAS) is a rare, heterogenous, clinical condition caused by a rare genetic mutation. The disorder is more common in females and is characterized by a triad of cutaneous, bone and endocrine abnormalities. We describe a male patient with MAS having multiple caf-au-lait macules and deforming polyostotic fibrous dysplasia involving long bones of the limbs, skull and spine without any endocrine abnormality. Severe bone deformities involving almost all bones have not been described previously and this prompted us to present the current case. Source


Plourde G.,Quebec Heart Lung Institute | Pancholy S.B.,Wright Center for Graduate Medical Education | Nolan J.,Staffordshire University | Jolly S.,Hamilton Health Sciences | And 8 more authors.
The Lancet | Year: 2015

Background Transradial access for cardiac catheterisation results in lower bleeding and vascular complications than the traditional transfemoral access route. However, the increased radiation exposure potentially associated with transradial access is a possible drawback of this method. Whether transradial access is associated with a clinically significant increase in radiation exposure that outweighs its benefits is unclear. Our aim was therefore to compare radiation exposure between transradial access and transfemoral access for diagnostic coronary angiograms and percutaneous coronary interventions (PCI). Methods We did a systematic review and meta-analysis of the scientific literature by searching the PubMed, Embase, and Cochrane Library databases with relevant terms, and cross-referencing relevant articles for randomised controlled trials (RCTs) that compared radiation parameters in relation to access site, published from Jan 1, 1989, to June 3, 2014. Three investigators independently sorted the potentially relevant studies, and two others extracted data. We focused on the primary radiation outcomes of fluoroscopy time and kerma-area product, and used meta-regression to assess the changes over time. Secondary outcomes were operator radiation exposure and procedural time. We used both fixed-effects and random-effects models with inverse variance weighting for the main analyses, and we did confirmatory analyses for observational studies. Findings Of 1252 records identified, we obtained data from 24 published RCTs for 19 328 patients. Our primary analyses showed that transradial access was associated with a small but significant increase in fluoroscopy time for diagnostic coronary angiograms (weighted mean difference [WMD], fixed effect: 1·04 min, 95% CI 0·84-1·24; p<0·0001) and PCI (1·15 min, 95% CI 0·96-1·33; p<0·0001), compared with transfemoral access. Transradial access was also associated with higher kerma-area product for diagnostic coronary angiograms (WMD, fixed effect: 1·72 Gy·cm2, 95% CI -0·10 to 3·55; p=0·06), and significantly higher kerma-area product for PCI (0·55 Gy·cm2, 95% CI 0·08-1·02; p=0·02). Mean operator radiation doses for PCI with basic protection were 107 μSv (SD 110) with transradial access and 74 μSv (68) with transfemoral access; with supplementary protection, the doses decreased to 21 μSv (17) with transradial access and 46 μSv (9) with transfemoral. Meta-regression analysis showed that the overall difference in fluoroscopy time between the two procedures has decreased significantly by 75% over the past 20 years from 2 min in 1996 to about 30 s in 2014 (p<0·0001). In observational studies, differences and effect sizes remained consistent with RCTs. Interpretation Transradial access was associated with a small but significant increase in radiation exposure in both diagnostic and interventional procedures compared with transfemoral access. Since differences in radiation exposure narrow over time, the clinical significance of this small increase is uncertain and is unlikely to outweigh the clinical benefits of transradial access. © 2015 Elsevier Ltd. Source


Goyal D.,Saumya Orthocare Center for Advanced Surgeries of the Knee Joint | Goyal A.,Smt NHL Municipal Medical College | Keyhani S.,Shahid Beheshti University of Medical Sciences | Lee E.H.,National University of Singapore | Hui J.H.P.,National University of Singapore
Arthroscopy - Journal of Arthroscopic and Related Surgery | Year: 2013

Purpose The purpose of this study was to examine the Level I and II evidence for newer generations of autologous chondrocyte implantation (ACI) versus first-generation ACI and to establish whether the newer generations have overcome the limitations associated with first-generation ACI. Methods A literature search was carried out for Level I and II evidence studies on cartilage repair using the PubMed database. All the studies that dealt with ACI were identified. Only Level I and II studies that compared newer generations against earlier generations were selected, whereas studies that compared ACI against other methods of cartilage repair were excluded. Results A total of 7 studies matched the selection criteria. Two studies compared periosteum-based autologous chondrocyte implantation (P-ACI) against collagen membrane-based autologous chondrocyte implantation (C-ACI), whereas one study each compared membrane-associated autologous chondrocyte implantation (MACI) against P-ACI and C-ACI. One study on C-ACI compared results related to age, whereas 2 studies evaluated postoperative rehabilitation after MACI. There was weak evidence showing that C-ACI is better than P-ACI and that MACI is comparable with both P-ACI and C-ACI. The weak evidence is because of studies with short durations of follow-up, small numbers of patients, medium-sized defects, and younger age groups. There is good evidence favoring an accelerated weight-bearing regimen after MACI. There is currently no evidence that supports scaffold-based ACI or arthroscopic implantation over first-generation ACI. Conclusions The hypothesis is thus partly proved in favor of C-ACI/MACI against P-ACI with weak evidence, in favor of accelerated weight bearing after MACI with strong evidence, and not in favor of arthroscopic and scaffold-based implantations because of unavailable evidence. Level of Evidence Level II, systematic review of Level I and II studies. © 2013 The Arthroscopy Association of North America. Published by Elsevier Inc. All Rights Reserved. Source


Goyal D.,Saumya Orthocare Center for Advanced Surgeries of the Knee Joint | Keyhani S.,Shahid Beheshti University of Medical Sciences | Goyal A.,Smt NHL Municipal Medical College | Lee E.H.,National University of Singapore | And 2 more authors.
Arthroscopy - Journal of Arthroscopic and Related Surgery | Year: 2014

Purpose Our purpose was to examine the Level I and II evidence for the use of osteochondral cylinder transfer technique (OCT) for cartilage repair. Methods A literature search was carried out for Level I and II evidence studies on cartilage repair using the PubMed database. All the studies that involved OCT were identified. Only Level I and II studies that compared OCT to other modalities of treatment such as microfracture (MF) and autologous chondrocyte implantation (ACI) were selected. Results A total of 8 studies matched the selection criteria with 2 Level I and 6 Level II studies. Four studies compared OCT with MF, 3 compared OCT with ACI, and one compared all 3 techniques. Of 3 studies, 4 came from a single center. Mean age of patients ranged from 24 to 33 years, and mean follow-up ranged from 9 to 124 months. The studies from the single center showed superior results from OCT over MF, especially in younger patients, with one study having long-term follow-up of 10 years. They also showed an earlier return to sports. The size of the lesions were small (average < 3 cm2). The 4 other independent studies did not show any difference between OCT and ACI, with one study showing inferior outcome in the OCT group. Magnetic resonance imaging (MRI) showed good osseous integration of the osteochondral plugs to the subchondral bone. Histologic examination showed that there was hyaline cartilage in the transplanted osteochondral plugs but no hyaline cartilage between the plugs. Conclusions From the studies of a single center, OCT had an advantage over MF in younger patients with small chondral lesions. Comparison of outcomes between OCT and ACI showed no significant difference in 2 studies and contrasting results in another 2 studies. There was insufficient evidence for long-term results for OCT. Level of Evidence Level II, systematic review of Level I and II studies. © 2014 The Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved. Source

Discover hidden collaborations