Smoler Proteomics Center

Haifa, Israel

Smoler Proteomics Center

Haifa, Israel
Time filter
Source Type

Cohen L.D.,Lorry Lokey Center for Life science and Engineering | Cohen L.D.,Network Biology Research Laboratories | Zuchman R.,Smoler Proteomics Center | Sorokina O.,University of Edinburgh | And 8 more authors.
PLoS ONE | Year: 2013

Chemical synapses contain multitudes of proteins, which in common with all proteins, have finite lifetimes and therefore need to be continuously replaced. Given the huge numbers of synaptic connections typical neurons form, the demand to maintain the protein contents of these connections might be expected to place considerable metabolic demands on each neuron. Moreover, synaptic proteostasis might differ according to distance from global protein synthesis sites, the availability of distributed protein synthesis facilities, trafficking rates and synaptic protein dynamics. To date, the turnover kinetics of synaptic proteins have not been studied or analyzed systematically, and thus metabolic demands or the aforementioned relationships remain largely unknown. In the current study we used dynamic Stable Isotope Labeling with Amino acids in Cell culture (SILAC), mass spectrometry (MS), Fluorescent Non-Canonical Amino acid Tagging (FUNCAT), quantitative immunohistochemistry and bioinformatics to systematically measure the metabolic half-lives of hundreds of synaptic proteins, examine how these depend on their pre/postsynaptic affiliation or their association with particular molecular complexes, and assess the metabolic load of synaptic proteostasis. We found that nearly all synaptic proteins identified here exhibited half-lifetimes in the range of 2-5 days. Unexpectedly, metabolic turnover rates were not significantly different for presynaptic and postsynaptic proteins, or for proteins for which mRNAs are consistently found in dendrites. Some functionally or structurally related proteins exhibited very similar turnover rates, indicating that their biogenesis and degradation might be coupled, a possibility further supported by bioinformatics-based analyses. The relatively low turnover rates measured here (∼0.7% of synaptic protein content per hour) are in good agreement with imaging-based studies of synaptic protein trafficking, yet indicate that the metabolic load synaptic protein turnover places on individual neurons is very substantial. © 2013 Cohen et al.

Moldavski O.,Hebrew University of Jerusalem | Levin-Kravets O.,Tel Aviv University | Ziv T.,Smoler Proteomics Center | Adam Z.,Hebrew University of Jerusalem | Prag G.,Tel Aviv University
PLoS ONE | Year: 2012

FtsH is an evolutionary conserved membrane-bound metalloprotease complex. While in most prokaryotes FtsH is encoded by a single gene, multiple FtsH genes are found in eukaryotes. Genetic and biochemical data suggest that the Arabidopsis chloroplast FtsH is a hetero-hexamer. This raises the question why photosynthetic organisms require a heteromeric complex, whereas in most bacteria a homomeric one is sufficient. To gain structural information of the possible complexes, the Arabidopsis FtsH2 (type B) and FtsH5 (type A) were modeled. An in silico study with mixed models of FtsH2/5 suggests that heteromeric hexamer structure with ratio of 4:2 is more likely to exists. Specifically, calculation of the buried surface area at the interfaces between neighboring subunits revealed that a hetero-complex should be thermodynamically more stable than a homo-hexamer, due to the presence of additional hydrophobic and hydrophilic interactions. To biochemically assess this model, we generated Arabidopsis transgenic plants, expressing epitope-tagged FtsH2 and immuno-purified the protein. Mass-spectrometry analysis showed that FtsH2 is associated with FtsH1, FtsH5 and FtsH8. Interestingly, we found that 'type B' subunits (FtsH2 and FtsH8) were 2-3 fold more abundant than 'type A' (FtsH1 and FtsH5). The biochemical data corroborate the in silico model and suggest that the thylakoid FtsH hexamer is composed of two 'type A' and four 'type B' subunits. © 2012 Moldavski et al.

Erdmann I.,Otto Von Guericke University of Magdeburg | Erdmann I.,Leibniz Institute for Neurobiology | Marter K.,Otto Von Guericke University of Magdeburg | Marter K.,Leibniz Institute for Neurobiology | And 16 more authors.
Nature Communications | Year: 2015

The specification and adaptability of cells rely on changes in protein composition. Nonetheless, uncovering proteome dynamics with cell-type-specific resolution remains challenging. Here we introduce a strategy for cell-specific analysis of newly synthesized proteomes by combining targeted expression of a mutated methionyl-tRNA synthetase (MetRS) with bioorthogonal or fluorescent non-canonical amino-acid-tagging techniques (BONCAT or FUNCAT). Substituting leucine by glycine within the MetRS-binding pocket (MetRSLtoG) enables incorporation of the non-canonical amino acid azidonorleucine (ANL) instead of methionine during translation. Newly synthesized proteins can thus be labelled by coupling the azide group of ANL to alkyne-bearing tags through 'click chemistry'. To test these methods for applicability in vivo, we expressed MetRSLtoG cell specifically in Drosophila. FUNCAT and BONCAT reveal ANL incorporation into proteins selectively in cells expressing the mutated enzyme. Cell-type-specific FUNCAT and BONCAT, thus, constitute eligible techniques to study protein synthesis-dependent processes in complex and behaving organisms.

Piterman R.,Technion - Israel Institute of Technology | Braunstein I.,Technion - Israel Institute of Technology | Isakov E.,Technion - Israel Institute of Technology | Ziv T.,Smoler Proteomics Center | And 3 more authors.
Molecular Biology of the Cell | Year: 2014

The 26S proteasome recognizes a vast number of ubiquitin-dependent degrada tion signals linked to various substrates. This recognition is mediated mainly by the stoichio metric proteasomal resident ubiquitin receptors S5a and Rpn13, which harbor ubiquitin-bind ing domains. Regulatory steps in substrate binding, processing, and subsequent downstream proteolytic events by these receptors are poorly understood. Here we demonstrate that mammalian S5a is present in proteasome-bound and free states. S5a is required for efficient proteasomal degradation of polyubiquitinated substrates and the recruitment of ubiquitin- like (Ubl) harboring proteins; however, S5a-mediated ubiquitin and Ubl binding occurs only on the proteasome itself. We identify the VWA domain of S5a as a domain that limits ubiq uitin and Ubl binding to occur only upon proteasomal association. Multiubiquitination events within the VWA domain can further regulate S5a association. Our results provide a molecular explanation to how ubiquitin and Ubl binding to S5a is restricted to the 26S proteasome. © 2014 Piterman Braunstein Isakov et al.

Loading Smoler Proteomics Center collaborators
Loading Smoler Proteomics Center collaborators