Time filter

Source Type

BIRMINGHAM, AL, United States

Di Maio F.,Polytechnic of Milan | Tsui K.L.,Smart Engineering | Zio E.,Polytechnic of Milan | Zio E.,Ecole Centrale Paris
Mechanical Systems and Signal Processing | Year: 2012

In this paper we present a new procedure for estimating the bearing Residual Useful Life (RUL) by combining data-driven and model-based techniques. Respectively, we resort to (i) Relevance Vector Machines (RVMs) for selecting a low number of significant basis functions, called Relevant Vectors (RVs), and (ii) exponential regression to compute and continuously update residual life estimations. The combination of these techniques is developed with reference to partially degraded thrust ball bearings and tested on real world vibration-based degradation data. On the case study considered, the proposed procedure outperforms other model-based methods, with the added value of an adequate representation of the uncertainty associated to the estimates of the quantification of the credibility of the results by the Prognostic Horizon (PH) metric. © 2012 Elsevier Ltd. All rights reserved. Source

Rafiee J.,Rensselaer Polytechnic Institute | Rafiee M.A.,Rensselaer Polytechnic Institute | Tse P.W.,Smart Engineering
Expert Systems with Applications | Year: 2010

This paper introduces an automatic feature extraction system for gear and bearing fault diagnosis using wavelet-based signal processing. Vibration signals recorded from two experimental set-ups were processed for gears and bearing conditions. Four statistical features were selected: standard deviation, variance, kurtosis, and fourth central moment of continuous wavelet coefficients of synchronized vibration signals (CWC-SVS). In this research, the mother wavelet selection is broadly discussed. 324 mother wavelet candidates were studied, and results show that Daubechies 44 (db44) has the most similar shape across both gear and bearing vibration signals. Next, an automatic feature extraction algorithm is introduced for gear and bearing defects. It also shows that the fourth central moment of CWC-SVS is a proper feature for both bearing and gear failure diagnosis. Standard deviation and variance of CWC-SVS demonstrated more appropriate outcome for bearings than gears. Kurtosis of CWC-SVS illustrated the acceptable performance for gears only. Results also show that although db44 is the most similar mother wavelet function across the vibration signals, it is not the proper function for all wavelet-based processing. © 2009 Elsevier Ltd. All rights reserved. Source

Presacco A.,Smart Engineering | Forrester L.,University of Maryland Baltimore County | Contreras-Vidal J.L.,Smart Engineering | Contreras-Vidal J.L.,University of Maryland University College
Journal of Neurophysiology | Year: 2011

Chronic recordings from ensembles of cortical neurons in primary motor and somatosensory areas in rhesus macaques provide accurate information about bipedal locomotion (Fitzsimmons NA, Lebedev MA, Peikon ID, Nicolelis MA. Front Integr Neurosci 3: 3, 2009). Here we show that the linear and angular kinematics of the ankle, knee, and hip joints during both normal and precision (attentive) human treadmill walking can be inferred from noninvasive scalp electroencephalography (EEG) with decoding accuracies comparable to those from neural decoders based on multiple single-unit activities (SUAs) recorded in nonhuman primates. Six healthy adults were recorded. Participants were asked to walk on a treadmill at their self-selected comfortable speed while receiving visual feedback of their lower limbs (i.e., precision walking), to repeatedly avoid stepping on a strip drawn on the treadmill belt. Angular and linear kinematics of the left and right hip, knee, and ankle joints and EEG were recorded, and neural decoders were designed and optimized with cross-validation procedures. Of note, the optimal set of electrodes of these decoders were also used to accurately infer gait trajectories in a normal walking task that did not require subjects to control and monitor their foot placement. Our results indicate a high involvement of a fronto-posterior cortical network in the control of both precision and normal walking and suggest that EEG signals can be used to study in real time the cortical dynamics of walking and to develop brain-machine interfaces aimed at restoring human gait function. © 2011 by the American Physiological Society. Source

Cen Z.,Huazhong University of Science and Technology | Wei J.,Huazhong University of Science and Technology | Jiang R.,Smart Engineering
International Journal of Neural Systems | Year: 2013

A novel gray-box neural network model (GBNNM), including multi-layer perception (MLP) neural network (NN) and integrators, is proposed for a model identification and fault estimation (MIFE) scheme. With the GBNNM, both the nonlinearity and dynamics of a class of nonlinear dynamic systems can be approximated. Unlike previous NN-based model identification methods, the GBNNM directly inherits system dynamics and separately models system nonlinearities. This model corresponds well with the object system and is easy to build. The GBNNM is embedded online as a normal model reference to obtain the quantitative residual between the object system output and the GBNNM output. This residual can accurately indicate the fault offset value, so it is suitable for differing fault severities. To further estimate the fault parameters (FPs), an improved extended state observer (ESO) using the same NNs (IESONN) from the GBNNM is proposed to avoid requiring the knowledge of ESO nonlinearity. Then, the proposed MIFE scheme is applied for reaction wheels (RW) in a satellite attitude control system (SACS). The scheme using the GBNNM is compared with other NNs in the same fault scenario, and several partial loss of effect (LOE) faults with different severities are considered to validate the effectiveness of the FP estimation and its superiority. © World Scientific Publishing Company. Source

Wang D.,Smart Engineering | Tse P.W.,Smart Engineering
Journal of Sound and Vibration | Year: 2012

A vibration signal collected from a complex machine consists of multiple vibration components, which are system responses excited by several sources. This paper reports a new blind component separation (BCS) method for extracting different mechanical fault features. By applying the proposed method, a single-channel mixed signal can be decomposed into two parts: the periodic and transient subsets. The periodic subset is related to the imbalance, misalignment and eccentricity of a machine. The transient subset refers to abnormal impulsive phenomena, such as those caused by localized bearing faults. The proposed method includes two individual strategies to deal with these different characteristics. The first extracts the sub-Gaussian periodic signal by minimizing the kurtosis of the equalized signals. The second detects the super-Gaussian transient signal by minimizing the smoothness index of the equalized signals. Here, the equalized signals are derived by an eigenvector algorithm that is a successful solution to the blind equalization problem. To reduce the computing time needed to select the equalizer length, a simple optimization method is introduced to minimize the kurtosis and smoothness index, respectively. Finally, simulated multiple-fault signals and a real multiple-fault signal collected from an industrial machine are used to validate the proposed method. The results show that the proposed method is able to effectively decompose the multiple-fault vibration mixture into periodic components and random non-stationary transient components. In addition, the equalizer length can be intelligently determined using the proposed method. © 2012 Elsevier Ltd. All rights reserved. Source

Discover hidden collaborations