Woburn, MA, United States
Woburn, MA, United States

Skyworks Solutions, Inc. is a semiconductor company headquartered in Woburn, Massachusetts.The company manufactures semiconductors for use in radio frequency and mobile communications systems. Its products include power amplifiers, front end modules and RF products for handsets and wireless infrastructure equipment. The Company's portfolio includes amplifiers, attenuators, circulators, demodulators, detectors, diodes, directional couplers, front-end modules, hybrids, infrastructure RF subsystems, isolators, lighting and display solutions, mixers, modulators, optocouplers, optoisolators, phase shifters, PLLsVCOs, power dividers/combiners, power management devices, receivers, switches and technical ceramics.During 2009 and 2010, Skyworks benefitted from industry moves towards higher-end mobile phones with multi-band communication, exiting fiscal year 2010 with revenue of $1,072 million. Although operating in a market dominated by big name companies, it doubled its share price in one year, and in March 2010 was tipped by the Forbes-owned Investopedia website as one of three "not-so-famous" stocks likely to give good capital returns in 2010.The company formed as a result of a merger of Alpha Industries and the wireless communications division of Conexant, which took effect on 26 June 2002. Headquartered in Woburn, Massachusetts, Skyworks has manufacturing facilities in Woburn, Newbury Park, California and Mexicali, Mexico and design centers in Irvine, California, Santa Rosa, California, Newbury Park, Woburn, Greensboro, North Carolina and Cedar Rapids, Iowa. The music video for The Postal Service's song "Such Great Heights" is set in the Newbury Park chip fabrication plant. According to its website, the company has design, engineering, manufacturing, marketing, sales and service facilities throughout North America, Europe, Japan and Asia.A Skyworks 2614B 315BB seem to be used in some hardware revisions of the PlayStation 4. Wikipedia.

SEARCH FILTERS
Time filter
Source Type

Patent
Skyworks Solutions | Date: 2016-11-16

Circuits and methods for controlling power amplifiers. In some embodiments, a power amplification system can include a first amplification stage configured to operate with a first bias signal, and a second amplification stage configured operate with a second bias signal. The power amplification system can further include a control circuit coupled to the first amplification stage and the second amplification stage. The control circuit can be configured to generate the first bias signal based on the second bias signal. Such a first bias signal can result in the first stage having a gain profile that compensates for either or both of a gain expansion and gain compression of the second amplification stage.


Provided herein are apparatus and methods for protecting radio frequency (RF) amplifiers from overdrive. In certain configurations, an RF amplification system includes a plurality of RF amplification stages including a first amplification stage and a second amplification stage subsequent to the first amplification stage in a signal path. The first amplification stage includes a first stage field-effect transistor (FET), and the second amplification stage includes a second stage FET and a gate-to-drain feedback circuit electrically connected between a gate and a drain of the second stage FET. The RF amplification system further includes an overdrive detection circuit that senses a drain current of the first stage FET to detect when an overdrive condition is present, and that decreases an impedance of the gate-to-drain feedback circuit in response to detection of the overdrive condition such that a gain of the second stage FET is reduced.


Patent
Skyworks Solutions | Date: 2016-11-10

A radio-frequency module includes a switching device having first and second switch arms and a common pole node connected to both the first and second switch arms, a first shunt arm connected to the first switch arm, and a first transmission line disposed in the first switch arm between the common pole node and the first shunt arm, the first transmission line being configured to present a substantially open circuit looking into the first switch arm from the common pole node at a fundamental frequency of a signal transmitting on the second switch arm when the first switch arm is in an OFF-state and the first shunt arm is in an ON-state


Embodiments disclosed herein include methods of modifying synthetic garnets used in RF applications to reduce or eliminate Yttrium or other rare earth metals in the garnets without adversely affecting the magnetic properties of the material. Some embodiments include substituting Bismuth for some of the Yttrium on the dodecahedral sites and introducing one or more high valency ions to the octahedral and tetrahedral sites. Calcium may also be added to the dodecahedral sites for valency compensation induced by the high valency ions, which could effectively displace all or most of the Yttrium (Y) in microwave device garnets. The modified synthetic garnets with substituted Yttrium (Y) can be used in various microwave magnetic devices such as circulators, isolators and resonators.


Patent
Skyworks Solutions | Date: 2017-01-25

Methods for fabricating an integrated circuit with a voltage regulator are provided. In some implementations, a method includes forming a primary regulator on a semiconductor substrate, including fabricating a switch, fabricating an amplifier for controlling the switch, and fabricating a voltage generator for biasing the amplifier to operate the primary regulator in a bypass mode or in a regulating mode. The method further includes forming an input terminal and an output terminal of the primary regulator on the semiconductor substrate, forming a secondary regulator on the substrate, forming an input terminal and an output terminal of the secondary regulator on the semiconductor substrate, and forming an electrical connection between the output terminal of the primary regulator and the input terminal of the secondary regulator.


Patent
Skyworks Solutions | Date: 2017-01-09

Disclosed are systems, devices and methodologies for handling wafers in wafer processing operations through use of wafer carriers. In an example situation, a wafer carrier can be configured as a plate to allow bonding of a wafer thereto to provide support for the wafer during some processing operations. Upon completion of such operations, the processed wafer can be separated from the support plate so as to allow further processing. Various devices and methodologies related to such wafer carriers for efficient handling of wafers are disclosed.


Disclosed are systems, circuits and methods related to low-loss bypass of a radio-frequency (RF) filter or diplexer. In some embodiments, a switching network circuitry can include a first switch that has an input pole configured to receive a radio-frequency (RF) signal, a pass-through throw configured to be connectable to the input pole to allow routing of the RF signal to an RF component, and at least one dedicated bypass throw configured to be connectable to the input pole and at least one bypass conduction path. The switching network circuitry can further include a second switch that has a pole and a throw, and is connectable between an output of the RF component and the bypass conduction path. Use of the dedicated bypass throw(s) in the first switch allows implementation of low-loss bypass of the filter or diplexer.


Disclosed are circuits and methods for increasing an output frequency of an inductance-capacitance (LC) oscillator. In some embodiments, the LC oscillator can be implemented as a voltage-controlled oscillator (VCO) having differential outputs. When the VCO is implemented on a die, wirebond connections from the outputs to a ground results in an effective inductance that impacts a maximum frequency associated with the VCO. An electrical connection such as a wirebond between the differential outputs yields a reduction in the effective inductance thereby increasing the maximum frequency. In some embodiments, the wirebond between the differential outputs can be configured so that its contribution to mutual inductance is reduced or substantially nil.


Patent
Skyworks Solutions | Date: 2017-01-18

Digitally controlled attenuators with low phase shift are provided herein. In certain configurations, a digitally controlled attenuator includes an attenuation circuit electrically connected between an input terminal and an output terminal, a bypass circuit electrically connected in parallel with the attenuation circuit between the input terminal and the output terminal, and a plurality of phase compensation capacitors including a first phase compensation capacitor and a second phase compensation capacitor electrically connected in series between the input terminal and the output terminal. The bypass circuit is configured to receive a mode control signal for selecting the bypass circuit to control an amount of attenuation between the input terminal and the output terminal. Additionally, the phase compensation capacitors are operable to compensate for a phase difference between a first signal path through the attenuation circuit and a second signal path through the bypass circuit.


Patent
Skyworks Solutions | Date: 2017-01-11

Apparatus and methods for level shifting in a radio frequency system are provided. In certain configurations, a radio frequency system includes a level shifter operable to provide level shifting to an input signal. The level shifter is biased by a bias voltage and powered by a supply voltage and a charge pump voltage. The radio frequency system further includes a charge pump configured to provide the charge pump voltage and to receive a mode signal operable to enable the charge pump in a first state and to disable the charge pump in a second state. The radio frequency system further includes a level shifter control circuit configured to control the bias voltage to track the charge pump voltage when the mode signal is in the first state, and to control the bias voltage with the supply voltage when the mode signal is in the second state.

Loading Skyworks Solutions collaborators
Loading Skyworks Solutions collaborators