Time filter

Source Type

Montagnani C.,French Research Institute for Exploitation of the Sea | Montagnani C.,Montpellier University | Marie B.,French Research Institute for Exploitation of the Sea | Marie B.,University of Burgundy | And 10 more authors.
ChemBioChem | Year: 2011

The shell of pearl oysters is organized in multiple layers of CaCO 3 crystallites packed together in an organic matrix. Relationships between the components of the organic matrix and mechanisms of nacre formation currently constitute the main focus of research into biomineralization. In this study, we characterized the pearlin protein from the oyster Pinctada margaritifera (Pmarg); this shares structural features with other members of a matrix protein family, N14/N16/pearlin. Pmarg pearlin exhibits calcium- and chitin-binding properties. Pmarg pearlin transcripts are distinctively localized in the mineralizing tissue responsible for nacre formation. More specifically, we demonstrate that Pmarg pearlin is localized within the interlamellar matrix of nacre aragonite tablets. Our results support recent models for multidomain matrix protein involvement in nacreous layer formation. We provide evidence here for the existence of a conserved family of nacre-associated proteins in Pteriidae, and reassess the evolutionarily conserved set of biomineralization genes related to nacre formation in this taxa. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Jackson D.J.,University of Queensland | Jackson D.J.,University of Gottingen | McDougall C.,University of Queensland | Woodcroft B.,University of Queensland | And 9 more authors.
Molecular Biology and Evolution | Year: 2010

The capacity to biomineralize is closely linked to the rapid expansion of animal life during the early Cambrian, with many skeletonized phyla first appearing in the fossil record at this time. The appearance of disparate molluscan forms during this period leaves open the possibility that shells evolved independently and in parallel in at least some groups. To test this proposition and gain insight into the evolution of structural genes that contribute to shell fabrication, we compared genes expressed in nacre (mother-of-pearl) forming cells in the mantle of the bivalve Pinctada maxima and the gastropod Haliotis asinina. Despite both species having highly lustrous nacre, we find extensive differences in these expressed gene sets. Following the removal of housekeeping genes, less than 10% of all gene clusters are shared between these molluscs, with some being conserved biomineralization genes that are also found in deuterostomes. These differences extend to secreted proteins that may localize to the organic shell matrix, with less than 15% of this secretome being shared. Despite these differences, H. asinina and P. maxima both secrete proteins with repetitive low-complexity domains (RLCDs). Pinctada maxima RLCD proteins-for example, the shematrins-are predominated by silk/fibroin-like domains, which are absent from the H. asinina data set. Comparisons of shematrin genes across three species of Pinctada indicate that this gene family has undergone extensive divergent evolution within pearl oysters. We also detect fundamental bivalve-gastropod differences in extracellular matrix proteins involved in mollusc-shell formation. Pinctada maxima expresses a chitin synthase at high levels and several chitin deacetylation genes, whereas only one protein involved in chitin interactions is present in the H. asinina data set, suggesting that the organic matrix on which calcification proceeds differs fundamentally between these species. Large-scale differences in genes expressed in nacre-forming cells of Pinctada and Haliotis are compatible with the hypothesis that gastropod and bivalve nacre is the result of convergent evolution. The expression of novel biomineralizing RLCD proteins in each of these two molluscs and, interestingly, sea urchins suggests that the evolution of such structural proteins has occurred independently multiple times in the Metazoa.

Skuldtech and University of Liège | Date: 2013-10-09

The invention provides an in vitro method or assay for the diagnosis of osteochondrosis or prediction of the likelihood of its onset in a terrestrian mammal, comprising measuring the expression level of a marker in a sample obtained from said terrestrian mammal and comparing said expression level to the expression level of said marker measured in a sample obtained from one or more terrestrian mammals of the same species not affected by osteochondrosis, wherein the marker is ApoB-3G, and wherein an increase in the expression level of ApoB-3G is indicative of osteochondrosis. The invention also provides a diagnostic kit for use in said method, which comprises at least one agent, which binds specifically to the product of the gene of the respective marker and which can be used to determine the expression level of said marker, wherein the marker is ApoB-3G.

Rabhi I.,CNRS PASTEUR Laboratory | Rabhi S.,CNRS PASTEUR Laboratory | Ben-Othman R.,CNRS PASTEUR Laboratory | Rasche A.,Max Planck Institute for Molecular Genetics | And 6 more authors.
PLoS Neglected Tropical Diseases | Year: 2012

We analyzed the transcriptional signatures of mouse bone marrow-derived macrophages at different times after infection with promastigotes of the protozoan parasite Leishmania major. Ingenuity Pathway Analysis revealed that the macrophage metabolic pathways including carbohydrate and lipid metabolisms were among the most altered pathways at later time points of infection. Indeed, L. major promastiogtes induced increased mRNA levels of the glucose transporter and almost all of the genes associated with glycolysis and lactate dehydrogenase, suggesting a shift to anaerobic glycolysis. On the other hand, L. major promastigotes enhanced the expression of scavenger receptors involved in the uptake of Low-Density Lipoprotein (LDL), inhibited the expression of genes coding for proteins regulating cholesterol efflux, and induced the synthesis of triacylglycerides. These data suggested that Leishmania infection disturbs cholesterol and triglycerides homeostasis and may lead to cholesterol accumulation and foam cell formation. Using Filipin and Bodipy staining, we showed cholesterol and triglycerides accumulation in infected macrophages. Moreover, Bodipy-positive lipid droplets accumulated in close proximity to parasitophorous vacuoles, suggesting that intracellular L. major may take advantage of these organelles as high-energy substrate sources. While the effect of infection on cholesterol accumulation and lipid droplet formation was independent on parasite development, our data indicate that anaerobic glycolysis is actively induced by L. major during the establishment of infection. © 2012 Rabhi et al.

Megarbane A.,Institute Je Rome Lejeune | Megarbane A.,French Institute of Health and Medical Research | Noguier F.,Skuldtech | Stora S.,Institute Je Rome Lejeune | And 11 more authors.
European Journal of Human Genetics | Year: 2013

Trisomy 21 (T21), or Down syndrome (DS), is the most frequent and recognizable cause of intellectual disabilities. The level of disability, as evaluated by the intelligence quotient (IQ) test, varies considerably between patients independent of other factors. To determine the genetic or molecular basis of this difference, a high throughput transcriptomic analysis was performed on twenty T21 patients with high and low IQ, and 10 healthy controls using Digital Gene Expression. More than 90 millions of tags were sequenced in the three libraries. A total of 80 genes of potential interest were selected for the qPCR experiment validation, and three housekeeping genes were used for normalizing purposes. HLA DQA1 and HLA DRB1 were significantly downregulated among the patients with a low IQ, the values found in the healthy controls being intermediate between those noted in the IQ+ and IQ-T21 patients. Interestingly, the intergenic region between these genes contains a binding sequence for the CCCTC-binding factor, or CTCF, and cohesin (a multisubunit complex), both of which are essential for expression of HLA DQA1 and HLA DRB1 and numerous other genes. Our results might lead to the discovery of genes, or genetic markers, that are directly involved in several phenotypes of DS and, eventually, to the identification of potential targets for therapeutic interventions. © 2013 Macmillan Publishers Limited.

Discover hidden collaborations