Time filter

Source Type

Suigen, South Korea

Kim H.,Kyung Hee University | Jang S.,Institute Pasteur Korea | Chung D.K.,Kyung Hee University | Chung D.K.,Skin Biotechnology Center
Molecules and Cells | Year: 2015

Lipoteichoic acid (LTA) is a major component of the cell wall of Gram-positive bacteria. Its effects on living organisms are different from those of lipopolysaccharide (LPS) found in Gram-negative bacteria. LTA contributes to immune regulatory effects including anti-aging. In this study, we showed that LTA isolated from Lactobacillus plantarum (pLTA) inhibited melanogenesis in B16F10 mouse melanoma cells. pLTA reduced the cellular activity of tyrosinase and the expression of tyrosinase family members in a dose-dependent manner. The expression of microphthalmia-associated transcription factor (MITF), a key factor in the synthesis of melanin, was also decreased by pLTA. Further, we showed that pLTA activated melanogenesis signaling, such as extracellular signal-regulated kinase (ERK) and phosphatidylinositol 3-kinse (PI3K)/AKT. In addition, the expression of heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) and HuR, which are important RNA-binding proteins (RBPs), was reduced. pLTA likely degrades MITF via regulation of melanogenic signaling and RNA stability of melanogenic proteins, resulting in the reduction of melanin. Thus, our data suggest that pLTA has therapeutic potential for treating hyperpigmentation disorders and can also be used as a cosmetic whitening agent. © The Korean Society for Molecular and Cellular Biology. All rights reserved. Source

Lee S.,WCU Biomodulation Major | Lee S.,Korea University | Kim J.-E.,WCU Biomodulation Major | Kim J.-E.,Korea University | And 21 more authors.
Journal of Clinical Biochemistry and Nutrition | Year: 2015

Skin hydration is one of the primary aims of beauty and treatments. Barley (Hordeum vulgare) and soybean (Glycine max) are major food crops, but can also be used as ingredients for the maintenance of skin health. We developed a natural productbased skin treatment using a barley and soybean formula (BS) incorporating yeast fermentation, and evaluated its skin hydration effects as a dietary supplement in a clinical study. Participants ingested a placebo- (n = 33) or BS- (3 g/day) containing drink (n = 32) for 8 weeks. A significant increase in hydration in the BS group as compared to the placebo group was observed on the faces of subjects after 4 and 8 weeks, and on the forearm after 4 weeks. Decreases in stratum corneum (SC) thickness were also observed on the face and forearm. BS enhanced hyaluronan (HA) and skin barrier function in vitro and reduced Hyal2 expression in human dermal fibroblasts (HDF). BS also recovered ultraviolet (UV) B-induced downregulation of HA in HaCaT cells. These results suggest that BS has promising potential for development as a health functional food to enhance skin health. Copyright © 2015 JCBN. Source

Jeong J.H.,Skin Biotechnology Center | Jang S.,Institute Pasteur Korea | Jung B.J.,Kyung Hee University | Jang K.-S.,Seoul National University | And 3 more authors.
Immunobiology | Year: 2015

OBJECTIVE: Lipoteichoic acid (LTA) is an immune-stimulatory component found in the cell wall of lactic acid bacteria, which are a major group of Gram-positive bacteria known to have beneficial health effects in humans. In this study, we evaluated the stimulatory effects of LTAs isolated from different lactobacilli species with mouse macrophage RAW 264.7 cells.METHODS: RAW 264.7 cells were stimulated with pLTA (isolated from Lactobacillus plantarum K8), rLTA (isolated from Lactobacillus rhamnosus), dLTA (isolated from Lactobacillus delbreukii), and sLTA (isolated from Lactobacillus sakei K101). Tumor necrosis factor (TNF)-α and interleukin (IL)-10 production were examined by ELISA, and nitric oxide (NO) production was assayed using Griess reaction. The mRNA and protein expression levels of inducible nitric oxide synthase (iNOS) was examined by reverse transcriptase polymerase chain reaction (RT-PCR) and Western blotting. Signaling molecules were also examined by Western blotting.RESULTS: pLTA and rLTA moderately induced TNF-α, IL-10, and NO production compared with stimulation of RAW 264.7 cells with dLTA and sLTA. Similar results were obtained for the mRNA and protein expression levels of iNOS. Western blot analysis showed that treatment of cells with pLTA or rLTA resulted in minimal phosphorylation of ERK, JNK and p38 MAPK while, dLTA and sLTA were strong activators of MAPK signaling. In addition, the glycolipid structure of LTAs was found to be composed of different fatty acid chain groups and lengths. Taken together, these results suggest that the differential immuno-stimulatory effects of LTAs isolated from different lactobacillus species may be related to their different ability to activate the MAPK signaling pathway, which are modulated by a unique glycolipid structure of LTA. Copyright © 2014 Elsevier GmbH. All rights reserved. Source

Hong Y.-F.,Kyung Hee University | Hong Y.-F.,Skin Biotechnology Center | Lee H.Y.,Seoul National University | Jung B.J.,Kyung Hee University | And 4 more authors.
Molecular Immunology | Year: 2015

Background: Ultraviolet (UV) irradiation from the sun is the primary environmental factor that causes human skin aging. UV irradiation induces the expressions of matrix metalloproteinases (MMPs) and extracellular matrix degrading enzymes. Among the members of MMP family, MMP-1 is an interstitial collagenase that degrades the collagen triple helix. We investigated the effect of Lactobacillus plantarum, well known as useful microorganism, on UV-induced-MMP-1 expression in human dermal fibroblasts. Methods: Human dermal fibroblasts (HDF) was pre-stimulated with lipoteichoic acid isolated from L. plantarum followed by UV irradiation. Secreted protein level of MMP-1 was evaluated by Western blot analysis. The phosphorylation of mitogen-activated protein kinases (MAPKs) and nuclear factor-kappa B (NF-κB) from the cell lysates was also examined by western blotting. Electrophoretic mobility-shift assay (EMSA) was used to detect the activated transcription factor, AP-1 and NF-κB. The detection of type 1 procollagen was carried with Procollagen type 1 C-peptide (PIP) EIA kit. The generation of reactive oxygen species (ROS) by LTA and UV irradiation was examined by Griess reagent assay and fluorescence microscope. Results: We found that lipoteichoic acid (LTA), a cell-wall component of Gram-positive bacteria, isolated from L. plantarum, inhibited MMP-1 expression. Pretreatment with LTA from L. plantarum (pLTA) reduced MMP-1 expression in a dose-dependent manner and inhibited activation of extracellular signal-regulated kinases (ERK) and c-Jun N-terminal kinases (JNK). It also led to the inhibition of DNA binding activity of activator protein-1 (AP-1) and of nuclear factor kappa-light-chain-enhancer of activated B cell (NF-κB). Furthermore, LTA promoted type 1 procollagen synthesis and reduced the generation of ROS induced by UV irradiation. Conclusion: Our study demonstrates that pLTA inhibits degradation of collagen and promotes its synthesis and that pLTA contributes to a decrease in ROS production. Therefore, pLTA from L. plantarum has potential abilities to prevent and treat skin photo-aging. © 2015. Source

Hong Y.-F.,Kyung Hee University | Hong Y.-F.,Skin Biotechnology Center | Lee Y.-D.,Kyung Hee University | Park J.-Y.,Kyung Hee University | And 6 more authors.
Journal of Microbiology and Biotechnology | Year: 2015

Lactic acid bacteria (LAB) are microorganisms that are believed to provide health benefits. Here, we isolated LAB from Indian fermented foods, such as traditional Yogurt and Dosa. LAB from Yogurt most significantly induced TNF-α and IL-1β production, whereas LAB from Dosa induced mild cytokine production. After 16S rRNA gene sequencing and phylogenetic analysis, a Yogurt-borne lactic acid bacterium was identified and classified as Lactobacillus delbrueckii subsp. bulgaricus, and it was renamed L. delbrueckii K552 for the further studies. Our data suggest that the newly isolated L. delbrueckii can be used for the treatment of immune deficiency disorders. © 2015, by The Korean Society for Microbiology and Biotechnology. Source

Discover hidden collaborations