Entity

Time filter

Source Type

Boulder, CO, United States

Patent
Siva Therapeutics | Date: 2014-12-11

Embodiments of this invention relate to a flexible, multifunctional apparatus for delivering electromagnetic energy to a target surface. The apparatus may be used in a variety of applications and environments, including but not limited to, medical therapies and treatments. The apparatus comprises at least one primary radiation source, in some embodiments an array of light-emitting diodes, and is capable of emitting electromagnetic radiation in the range from 800 to 950 nanometers. The apparatus comprises a moveable arm for positioning the radiation source relative to the target surface. The apparatus is useful for photothermal therapy in the treatment of medical conditions, including cancer.


Popp M.K.,Siva Therapeutics | Oubou I.,Siva Therapeutics | Shepherd C.,Siva Therapeutics | Nager Z.,Siva Therapeutics | And 2 more authors.
Journal of Nanomaterials | Year: 2014

Photothermal therapy (PTT) treatments have shown strong potential in treating tumors through their ability to target destructive heat preferentially to tumor regions. In this paper we demonstrate that PTT in a murine melanoma model using gold nanorods (GNRs) and near-infrared (NIR) light decreases tumor volume and increases animal survival to an extent that is comparable to the current generation of melanoma drugs. GNRs, in particular, have shown a strong ability to reach ablative temperatures quickly in tumors when exposed to NIR light. The current research tests the efficacy of GNRs PTT in a difficult and fast growing murine melanoma model using a NIR light-emitting diode (LED) light source. LED light sources in the NIR spectrum could provide a safer and more practical approach to photothermal therapy than lasers. We also show that the LED light source can effectively and quickly heat in vitro and in vivo models to ablative temperatures when combined with GNRs. We anticipate that this approach could have significant implications for human cancer therapy. Copyright © 2014 Mary K. Popp et al. Source

Discover hidden collaborations