Time filter

Source Type

Zhang D.,Sino French Cooperative Central Laboratory | Zhang D.,French Institute of Health and Medical Research | Xu L.,Sino French Cooperative Central Laboratory | Cao F.,Sino French Cooperative Central Laboratory | And 4 more authors.
Cell Stress and Chaperones | Year: 2010

Celastrol, a novel HSP90 inhibitor, has recently attracted much attention due to its potential in multiple applications, such as anti-inflammation use, degenerative neuron disease relief, and tumor management. At present, the studies in celastrol's effects on HSP90's clients have focused on the kinase sub-population, while another key sub-population, nuclear transcription factors (TFs), is not being well-explored. In this study, we observe the effects of celastrol on 18 TFs (belonging to HSP90 clients) in three human cell lines: MCF-7 (breast cancer), HepG2 (hepatoma), and THP-1 (monocytic leukemia). The results show that at least half of the detectable TFs were affected by celastrol, though the effect patterns varied with cell type and dosage. Bi-directional regulations of some TFs were identified, a phenomenon not yet seen with other HSP90 inhibitors. Celastrol's capability to affect multiple TFs was consistent with its altering HSP90/TFs interactions and disrupting HSP90/Hop interaction, in addition to the reported damaging HSP90/Cdc37 interaction. This work confirms, for the first time, that celastrol has broad effects on TFs belonging to HSP90's clients, casts new light on understanding these reported actions, and suggests new possible applications for celastrol, such as diabetes management. © 2010 Cell Stress Society International.

Peng B.,Sino French Cooperative Central Laboratory | Zhang X.,Sino French Cooperative Central Laboratory | Zhang X.,Ningxia Medical University | Cao F.,Sino French Cooperative Central Laboratory | And 10 more authors.
BMC Cancer | Year: 2014

Background: Celastrol is a promising anti-tumor agent, yet it also elevates heat shock proteins (HSPs), especially HSP70, this effect believed to reduce its anti-tumor effects. Concurrent use of siRNA to increase celastrol's anti-tumor effects through HSP70 interference has been reported, but because siRNA technology is difficult to clinically apply, an alternative way to curb unwanted HSP70 elevation caused by celastrol treatment is worth exploring.Methods: In this work, we explore three alternative strategies to control HSP70 elevation: (1) Searching for cancer cell types that show no HSP70 elevation in the presence of celastrol (thus recommending themselves as suitable targets); (2) Modifying HSP70-inducing chemical groups, i.e.: the carboxyl group in celastrol; and (3) Using signaling molecule inhibitors to specifically block HSP70 elevation while protecting and/or enhancing anti-tumor effects.Results: The first strategy was unsuccessful since celastrol treatment increased HSP70 in all 7 of the cancer cell types tested, this result related to HSF1 activation. The ubiquity of HSF1 expression in different cancer cells might explain why celastrol has no cell-type limitation for HSP70 induction. The second strategy revealed that modification of celastrol's carboxyl group abolished its ability to elevate HSP70, but also abolished celastrol's tumor inhibition effects. In the third strategy, 11 inhibitors for 10 signaling proteins reportedly related to celastrol action were tested, and five of these could reduce celastrol-caused HSP70 elevation. Among these, the peptide deformylase (PDF) inhibitor, actinonin, could synergize celastrol's proliferation inhibition.Conclusions: Concurrent use of the chemical agent actinonin could reduce celastrol's HSP70 elevation and also enhance proliferation inhibition by celastrol. This combination presents a novel alternative to siRNA technology and is worth further investigation for its potentially effective anti-tumor action. © 2014 Peng et al.; licensee BioMed Central Ltd.

Peng B.,Sino French Cooperative Central Laboratory | Xu L.,Sino French Cooperative Central Laboratory | Cao F.,Sino French Cooperative Central Laboratory | Wei T.,Sino French Cooperative Central Laboratory | And 4 more authors.
Molecular Cancer | Year: 2010

Background: Because some of heat shock protein 90's (HSP90) clients are key cell cycle regulators, HSP90 inhibition can affect the cell cycle. Recently, celastrol is identified both as a novel inhibitor of HSP90 and as a potential anti-tumor agent. However, this agent's effects on the cell cycle are rarely investigated. In this study, we observed the effects of celastrol on the human monocytic leukemia cell line U937 cell cycle.Results: Celastrol affected the proliferation of U937 in a dose-dependent way, arresting the cell cycle at G0/G1 with 400 nM doses and triggering cell death with doses above 1000 nM. Cell cycle arrest was accompanied by inhibition of HSP90 ATPase activity and elevation in HSP70 levels (a biochemical hallmark of HSP90 inhibition), a reduction in Cyclin D1, Cdk4 and Cdk6 levels, and a disruption of the HSP90/Cdc37/Cdk4 complex. The observed effects of celastrol on the U937 cell cycle were thiol-related, firstly because the effects could be countered by pre-loading thiol-containing agents and secondly because celastrol and thiol-containing agents could react with each other to form new compounds.Conclusions: Our results disclose a novel action of celastrol-- causing cell cycle arrest at G0/G1 phase based upon thiol-related HSP90 inhibition. Our work suggests celastrol's potential in tumor and monocyte-related disease management. © 2010 Peng et al; licensee BioMed Central Ltd.

Xu L.-M.,Second Military Medical University | Xu L.-M.,Sino French Cooperative Central Laboratory | Zheng Y.-J.,Second Military Medical University | Zheng Y.-J.,Shanghai University of Traditional Chinese Medicine | And 12 more authors.
PLoS ONE | Year: 2014

All-trans retinoic acid (ATRA) is a revolutionary agent for acute promyelocytic leukemia (APL) treatment via differentiation induction. However, ATRA treatment also increases cytokine, chemokine, and adhesive molecule (mainly ICAM-1) expression, which can cause clinical complications, including a severe situation known as differentiation syndrome (DS) which can cause death. Therefore, it is of clinical significance to find a strategy to specifically blunt inflammatory effects while preserving differentiation. Here we report that the natural compound, celastrol, could effectively block lung infiltrations in DS animal models created by loading ATRA-induced APL cell line NB4. In ATRA-treated NB4 cells, celastrol could potently inhibit ICAM-1 elevation and partially reduce TNF-α and IL-1β secretion, though treatment showed no effects on IL-8 and MCP-1 levels. Celastrol's effect on ICAM-1 in ATRA-treated NB4 was related to reducing MEK1/ERK1 activation. Strikingly and encouragingly, celastrol showed no obvious effects on ATRA-induced NB4 differentiation, as determined by morphology, enzymes, and surface markers. Our results show that celastrol is a promising and unique agent for managing the side effects of ATRA application on APL, and suggest that hyper-inflammatory ability is accompanied by, but not necessary for, APL differentiation. Thus we offered an encouraging novel strategy to further improve differentiation therapy. © 2014 Xu et al.

Cao F.-F.,Sino French Cooperative Central Laboratory | Xu L.-M.,Sino French Cooperative Central Laboratory | Zhang X.,Sino French Cooperative Central Laboratory | Zhang X.,Ningxia Medical University | And 6 more authors.
Cytometry Part A | Year: 2014

Flow cytometry, in conjunction with immunoprecipitation (IP-FCM), is suggested to have some advantages to conventional IP-western blot technology in analyzing protein complexes. In this paper, to further examine its practicability, we test the use of IP-FCM in detecting the HSP90 complex, which has gained importance in drug research and development and involves more than a dozen components. We found that IP-FCM could effectively detect HSP70, p23, Cdc37, and Cdk6 components in the HSP90 complex naturally formed in U937 cells when this complex was captured by anti-HSP90 antibody-coated polystyrene microspheres. IP-FCM could also detect alteration in components caused by treating cells with HSP90 inhibitors. In a cell-free environment, IP-FCM could detect the direct effects of ATP and/or HSP90 inhibitors (17-N-allylamino-17-demethoxygeldanamycin or celastrol) in causing component dissociation and the time- and dose-effects of inhibitor-caused dissociation. IP-FCM is a practical and powerful platform for analyzing HSP90 complex components, and is thus a useful tool in studying HSP90 complex function and screening inhibitors. © 2013 International Society for Advancement of Cytometry.

Discover hidden collaborations