Entity

Time filter

Source Type

Singapore, Singapore

Patent
Nanyang Technological University and Singapore Health Services Pte Ltd. | Date: 2014-01-07

A stable liposomal formulation for ocular delivery. The formulation contains a liposome that includes at least one lipid bilayer containing a phosphatidylcholine, and a prostaglandin F


Patent
Nanyang Technological University and Singapore Health Services Pte Ltd. | Date: 2014-03-06

A method of producing an artificial neural network capable of predicting the survivability of a patient, including: storing in an electronic database patient health data comprising a plurality of sets of data, each set having at least one of a first parameter relating to heart rate variability data and a second parameter relating to vital sign data, each set further having a third parameter relating to patient survivability; providing a network of nodes interconnected to form an artificial neural network, the nodes comprising a plurality of artificial neurons, each artificial neuron having at least one input with an associated weight; and training the artificial neural network using the patient health data such that the associated weight of the at least one input of each artificial neuron is adjusted in response to respective first, second and third parameters of different sets of data from the patient health data.


Patent
Singapore Health Services Pte Ltd. and Nanyang Technological University | Date: 2015-02-06

A method of producing an artificial neural network capable of predicting the survivability of a patient, including: storing in an electronic database patient health data comprising a plurality of sets of data, each set having at least one of a first parameter relating to heart rate variability data and a second parameter relating to vital sign data, each set further having a third parameter relating to patient survivability; providing a network of nodes interconnected to form an artificial neural network, the nodes comprising a plurality of artificial neurons, each artificial neuron having at least one input with an associated weight; and training the artificial neural network using the patient health data such that the associated weight of the at least one input of each artificial neuron is adjusted in response to respective first, second and third parameters of different sets of data from the patient health data.


Patent
Nanyang Technological University and Singapore Health Services Pte Ltd. | Date: 2014-03-06

A method of producing an artificial neural network capable of predicting the survivability of a patient, including: storing in an electronic database patient health data comprising a plurality of sets of data, each set having at least one of a first parameter relating to heart rate variability data and a second parameter relating to vital sign data, each set further having a third parameter relating to patient survivability; providing a network of nodes interconnected to form an artificial neural network, the nodes comprising a plurality of artificial neurons, each artificial neuron having at least one input with an associated weight; and training the artificial neural network using the patient health data such that the associated weight of the at least one input of each artificial neuron is adjusted in response to respective first, second and third parameters of different sets of data from the patient health data.


Patent
Singapore Health Services Pte Ltd. and Nanyang Technological University | Date: 2014-12-12

A method of predicting survivability of a patient. The method includes storing in an electronic database patient health data comprising a plurality of sets of data, each set having a first parameter relating to heart rate variability data including at least one of ST segment elevation and depression, a second parameter relating to vital sign data, and a third parameter relating to patient survivability; providing a network of nodes interconnected to form an artificial neural network, the nodes comprising a plurality of neurons, each having at least one input with an associated weight; and training the neural network using the patient health data such that the associated weight of the at least one input of each neuron is adjusted in response to respective first, second and third parameters of different sets of data from the patient health data, such that the neural network is trained to produce a prediction on the survivability of a patient within the next 72 hours.

Discover hidden collaborations