Sindh Poultry Vaccine Center

Korangi, Pakistan

Sindh Poultry Vaccine Center

Korangi, Pakistan
Time filter
Source Type

Shabbir M.Z.,University of Veterinary and Animal Sciences | Zohari S.,National Veterinary Institute | Yaqub T.,University of Veterinary and Animal Sciences | Nazir J.,University of Veterinary and Animal Sciences | And 21 more authors.
Virology Journal | Year: 2013

Background: Newcastle disease (ND) is one of the most deadly diseases of poultry around the globe. The disease is endemic in Pakistan and recurrent outbreaks are being reported regularly in wild captive, rural and commercial poultry flocks. Though, efforts have been made to characterize the causative agent in some of parts of the country, the genetic nature of strains circulating throughout Pakistan is currently lacking. Material and methods. To ascertain the genetics of NDV, 452 blood samples were collected from 113 flocks, originating from all the provinces of Pakistan, showing high mortality (30-80%). The samples represented domesticated poultry (broiler, layer and rural) as well as wild captive birds (pigeons, turkeys, pheasants and peacock). Samples were screened with real-time PCR for both matrix and fusion genes (1792 bp), positive samples were subjected to amplification of full fusion gene and subsequent sequencing and phylogenetic analysis. Results: The deduced amino acid sequence of the fusion protein cleavage site indicated the presence of motif ( 112RK/RQRR↓F117) typical for velogenic strains of NDV. Phylogenetic analysis of hypervariable region of the fusion gene indicated that all the isolates belong to lineage 5 of NDV except isolates collected from Khyber Pakhtunkhwa (KPK) province. A higher resolution of the phylogenetic analysis of lineage 5 showed the distribution of Pakistani NDV strains to 5b. However, the isolates from KPK belonged to lineage 4c; the first report of such lineage from this province. Conclusions: Taken together, data indicated the prevalence of multiple lineages of NDV in different poultry population including wild captive birds. Such understanding is crucial to underpin the nature of circulating strains of NDV, their potential for interspecies transmission and disease diagnosis and control strategies. © 2013 Shabbir et al.; licensee BioMed Central Ltd.

Wasilenko J.L.,U.S. Department of Agriculture | Pantin-Jackwood M.,U.S. Department of Agriculture | Khan T.A.,Sindh Poultry Vaccine Center | Khan T.A.,University of Karachi | And 5 more authors.
Virus Genes | Year: 2012

Nine avian influenza viruses (AIV), H5N1 subtype, were isolated from dead poultry in the Karachi region of Pakistan from 2006 to 2008. The intravenous pathogenicity indices and HA protein cleavage sites of all nine viruses were consistent with highly pathogenic AIV. Based on phylogenetic analysis of the HA genes, these isolates belong to clade 2.2 and both the HA and NA are closely related to each other (nucleotide identities above 99.0%) and to other Middle Eastern H5N1 AIV isolates (nucleotide identities above 98.0%). The phylogenetic data suggest that the virus in both epornitics of H5N1 HPAIV in commercial poultry in the Karachi region of Pakistan between 2006 and 2008 were from a very closely related source, however, there is inadequate epidemiological data to determine what the reservoir was for the virus between the 2006 and 2007 outbreaks other than that there was a single introduction into the region. © Springer Science+Business Media, LLC (Outside the USA) 2011.

Abbas M.A.,National Reference Laboratory for Poultry Diseases | Abbas M.A.,Quaid-i-Azam University | Spackman E.,U.S. Department of Agriculture | Fouchier R.,Erasmus Medical Center | And 12 more authors.
Vaccine | Year: 2011

Vaccination has been a critical tool in the control of some avian influenza viruses (AIV) and has been used routinely in Pakistan to help control sporadic outbreaks of highly pathogenic (HP) H7 AIV since 1995. During that time, several AIV isolates were utilized as inactivated vaccines with varying degrees of success. In order to evaluate which H7 AIV strains may serve as optimal vaccines for diverse H7 AIVs from Pakistan we conducted vaccination-challenge studies with five H7 vaccines against challenge with two HPAIVs: A/chicken/Murree/NARC-1/1995 H7N3 and A/chicken/Karachi/SPVC-4/2004 H7N3. To further characterize the isolates antigenic cartography was used to visually demonstrate the antigenic relationships among the isolates. All vaccines provided similar protection against mortality, morbidity and shedding of challenge virus from the respiratory tract. However, some minor (not statistically significant) differences were observed and correlated with antibody levels induced by the vaccine prior to challenge. © 2011.

Abbas M.A.,National Reference Laboratory for Poultry Diseases | Abbas M.A.,Quaid-i-Azam University | Spackman E.,U.S. Department of Agriculture | Swayne D.E.,U.S. Department of Agriculture | And 6 more authors.
Virology Journal | Year: 2010

Background. Avian influenza virus (AIV) infections have caused heavy economic losses to the poultry industry in Pakistan as well as numerous other regions worldwide. The first introduction of H7N3 AIV to Pakistan occurred during 1995, since then H7N3, H9N2 and H5N1 AIVs have each been sporadically isolated. This report evaluates the genetic origin of the H7N3 viruses from Pakistan collected 1995-2004 and how they disseminated within the country. To accomplish this we produced whole genome sequences for 6 H7N3 viruses and data for the HA and NA genes of an additional 7 isolates. All available sequence from H7N3 AIV from Pakistan was included in the analysis. Results. Phylogenetic analysis revealed that there were two introductions of H7 into Pakistan and one N3 introduction. Only one of the H7 introductions appears to have become established in poultry in Pakistan, while the other was isolated from two separate outbreaks 6 years apart. The data also shows that reassortment has occurred between H7N3 and H9N2 viruses in the field, likely during co-infection of poultry. Also, with the exception of these few reassortant isolates, all 8 genes in the predominant H7N3 virus lineage have evolved to be phylogenetically distinct. Conclusions. Although rigorous control measures have been implemented in commercial poultry in Pakistan, AIV is sporadically transmitted to poultry and among the different poultry industry compartments (broilers, broiler breeders, table egg layers). Since there is one primary H7 lineage which persists and that has reassorted with the H9N2 AIV in poultry, it suggests that there is a reservoir with some link commercial poultry. On a general level, this offers insight into the molecular ecology of AIV in poultry where the virus has persisted despite vaccination and biosecurity. This data also illustrates the importance of sustained surveillance for AIVs in poultry. © 2010 Abbas et al; licensee BioMed Central Ltd.

Khan T.A.,Sindh Poultry Vaccine Center | Rue C.A.,U.S. Department of Agriculture | Rehmani S.F.,Sindh Poultry Vaccine Center | Ahmed A.,Sindh Poultry Vaccine Center | And 3 more authors.
Journal of Clinical Microbiology | Year: 2010

Eight Newcastle disease virus isolates from Pakistan were sequenced and characterized. A PCR matrix gene assay, designed to detect all avian paramyxovirus 1, did not detect four of the isolates. A new matrix gene test that detected all isolates was developed. Phylogenetic analysis and pathotyping confirmed that virulent viruses of different genotypes are circulating in Pakistan. Copyright © 2010, American Society for Microbiology. All Rights Reserved.

Loading Sindh Poultry Vaccine Center collaborators
Loading Sindh Poultry Vaccine Center collaborators