Entity

Time filter

Source Type

Vienna, Austria

Kehrer J.,University of Bergen | Muigg P.,Vienna University of Technology | Doleisch H.,SimVis GmbH | Hauser H.,University of Bergen
IEEE Transactions on Visualization and Computer Graphics | Year: 2011

We present a systematic approach to the interactive visual analysis of heterogeneous scientific data. The data consist of two interrelated parts given on spatial grids over time (e.g., atmosphere and ocean part from a coupled climate model). By integrating both data parts in a framework of coordinated multiple views (with linking and brushing), the joint investigation of features across the data parts is enabled. An interface is constructed between the data parts that specifies 1) which grid cells in one part are related to grid cells in the other part, and vice versa, 2) how selections (in terms of feature extraction via brushing) are transferred between the two parts, and 3) how an update mechanism keeps the feature specification in both data parts consistent during the analysis. We also propose strategies for visual analysis that result in an iterative refinement of features specified across both data parts. Our approach is demonstrated in the context of a complex simulation of fluid-structure interaction and a multirun climate simulation. © 2011 IEEE. Source


Doleisch H.,SimVis GmbH | Hauser H.,University of Bergen
Computing in Science and Engineering | Year: 2012

The interactive visual exploration of large and complex simulation datasets has become an important methodology that improves data analysis for scientists and professional practitioners. © 2006 IEEE. Source


Muigg P.,Vienna University of Technology | Muigg P.,SimVis GmbH | Hadwiger M.,King Abdullah University of Science and Technology | Doleisch H.,SimVis GmbH | Groller E.,Vienna University of Technology
IEEE Transactions on Visualization and Computer Graphics | Year: 2011

This paper presents a novel framework for visualizing volumetric data specified on complex polyhedral grids, without the need to perform any kind of a priori tetrahedralization. These grids are composed of polyhedra that often are non-convex and have an arbitrary number of faces, where the faces can be non-planar with an arbitrary number of vertices. The importance of such grids in state-of-the-art simulation packages is increasing rapidly. We propose a very compact, face-based data structure for representing such meshes for visualization, called two-sided face sequence lists (TSFSL), as well as an algorithm for direct GPU-based ray-casting using this representation. The TSFSL data structure is able to represent the entire mesh topology in a 1D TSFSL data array of face records, which facilitates the use of efficient 1D texture accesses for visualization. In order to scale to large data sizes, we employ a mesh decomposition into bricks that can be handled independently, where each brick is then composed of its own TSFSL array. This bricking enables memory savings and performance improvements for large meshes. We illustrate the feasibility of our approach with real-world application results, by visualizing highly complex polyhedral data from commercial state-of-the-art simulation packages. © 2011 IEEE. Source


Muigg P.,Vienna University of Technology | Muigg P.,SimVis GmbH | Hadwiger M.,King Abdullah University of Science and Technology | Doleisch H.,SimVis GmbH | Groller E.,Vienna University of Technology
Computer Graphics Forum | Year: 2011

Displaying a large number of lines within a limited amount of screen space is a task that is common to many different classes of visualization techniques such as time-series visualizations, parallel coordinates, link-node diagrams, and phase-space diagrams. This paper addresses the challenging problems of cluttering and overdraw inherent to such visualizations. We generate a 2x2 tensor field during line rasterization that encodes the distribution of line orientations through each image pixel. Anisotropic diffusion of a noise texture is then used to generate a dense, coherent visualization of line orientation. In order to represent features of different scales, we employ a multi-resolution representation of the tensor field. The resulting technique can easily be applied to a wide variety of line-based visualizations. We demonstrate this for parallel coordinates, a time-series visualization, and a phase-space diagram. Furthermore, we demonstrate how to integrate a focus+context approach by incorporating a second tensor field. Our approach achieves interactive rendering performance for large data sets containing millions of data items, due to its image-based nature and ease of implementation on GPUs. Simulation results from computational fluid dynamics are used to evaluate the performance and usefulness of the proposed method. © 2011 The Author(s). Source


Hollt T.,King Abdullah University of Science and Technology | Beyer J.,King Abdullah University of Science and Technology | Gschwantner F.,is Research Center | Muigg P.,SimVis GmbH | And 3 more authors.
IEEE Pacific Visualization Symposium 2011, PacificVis 2011 - Proceedings | Year: 2011

Increasing demands in world-wide energy consumption and oil depletion of large reservoirs have resulted in the need for exploring smaller and more complex oil reservoirs. Planning of the reservoir valorization usually starts with creating a model of the subsurface structures, including seismic faults and horizons. However, seismic interpretation and horizon tracing is a difficult and error-prone task, often resulting in hours of work needing to be manually repeated. In this paper, we propose a novel, interactive workflow for horizon interpretation based on well positions, which include additional geological and geophysical data captured by actual drillings. Instead of interpreting the volume slice-by-slice in 2D, we propose 3D seismic interpretation based on well positions. We introduce a combination of 2D and 3D minimal cost path and minimal cost surface tracing for extracting horizons with very little user input. By processing the volume based on well positions rather than slice-based, we are able to create a piecewise optimal horizon surface at interactive rates. We have integrated our system into a visual analysis platform which supports multiple linked views for fast verification, exploration and analysis of the extracted horizons. The system is currently being evaluated by our collaborating domain experts. © 2011 IEEE. Source

Discover hidden collaborations