Entity

Time filter

Source Type


Shalata A.,Mount Sinai School of Medicine | Shalata A.,Simon Winter Institute for Human Genetics | Shalata A.,Services Group | Ramirez M.C.,Mount Sinai School of Medicine | And 22 more authors.
American Journal of Human Genetics | Year: 2013

Obesity is a major public health concern, and complementary research strategies have been directed toward the identification of the underlying causative gene mutations that affect the normal pathways and networks that regulate energy balance. Here, we describe an autosomal-recessive morbid-obesity syndrome and identify the disease-causing gene defect. The average body mass index of affected family members was 48.7 (range = 36.7-61.0), and all had features of the metabolic syndrome. Homozygosity mapping localized the disease locus to a region in 3q29; we designated this region the morbid obesity 1 (MO1) locus. Sequence analysis identified a homozygous nonsense mutation in CEP19, the gene encoding the ciliary protein CEP19, in all affected family members. CEP19 is highly conserved in vertebrates and invertebrates, is expressed in multiple tissues, and localizes to the centrosome and primary cilia. Homozygous Cep19-knockout mice were morbidly obese, hyperphagic, glucose intolerant, and insulin resistant. Thus, loss of the ciliary protein CEP19 in humans and mice causes morbid obesity and defines a target for investigating the molecular pathogenesis of this disease and potential treatments for obesity and malnutrition. © 2013 The American Society of Human Genetics. Source


Shalata A.,Simon Winter Institute for Human Genetics | Furman H.,Simon Winter Institute for Human Genetics | Adir V.,Simon Winter Institute for Human Genetics | Adir N.,Institute of Technology and the Rappaport Institute for Research | And 4 more authors.
Muscle and Nerve | Year: 2010

The aims of this study were to (1) characterize the clinical phenotype, (2) define the causative mutation, and (3) correlate the clinical phenotype with genotype in a large consanguineous Arab family with myotonia congenita. Twentyfour family members from three generations were interviewed and examined. Genomic DNA was extracted from peripheral blood samples for sequencing the exons of the CLCN1 gene. Twelve individuals with myotonia congenita transmitted the condition in an autosomal dominant manner with incomplete penetrance. A novel missense mutation [568GG>TC (G190S)] was found in a dose-dependent clinical phenotype. Although heterozygous individuals were asymptomatic or mildly affected, the homozygous individuals were severely affected. The mutation is a glycine-to-serine residue substitution in a well-conserved motif in helix D of the CLC-1 chloride channel in the skeletal muscle plasmalemma. A novel mutation, 568GG>TC (G190S) in the CLCN1 gene, is responsible for autosomal dominant myotonia congenita with a variable phenotypic spectrum. © 2009 Wiley Periodicals, Inc. Source


Huber C.,French Institute of Health and Medical Research | Faqeih E.A.,King Fahad Medical City | Bartholdi D.,University of Zurich | Bole-Feysot C.,Plateforme de Genomique | And 12 more authors.
American Journal of Human Genetics | Year: 2013

Opsismodysplasia (OPS) is a severe autosomal-recessive chondrodysplasia characterized by pre- and postnatal micromelia with extremely short hands and feet. The main radiological features are severe platyspondyly, squared metacarpals, delayed skeletal ossification, and metaphyseal cupping. In order to identify mutations causing OPS, a total of 16 cases (7 terminated pregnancies and 9 postnatal cases) from 10 unrelated families were included in this study. We performed exome sequencing in three cases from three unrelated families and only one gene was found to harbor mutations in all three cases: inositol polyphosphate phosphatase-like 1 (INPPL1). Screening INPPL1 in the remaining cases identified a total of 12 distinct INPPL1 mutations in the 10 families, present at the homozygote state in 7 consanguinous families and at the compound heterozygote state in the 3 remaining families. Most mutations (6/12) resulted in premature stop codons, 2/12 were splice site, and 4/12 were missense mutations located in the catalytic domain, 5-phosphatase. INPPL1 belongs to the inositol-1,4,5-trisphosphate 5-phosphatase family, a family of signal-modulating enzymes that govern a plethora of cellular functions by regulating the levels of specific phosphoinositides. Our finding of INPPL1 mutations in OPS, a severe spondylodysplastic dysplasia with major growth plate disorganization, supports a key and specific role of this enzyme in endochondral ossification. © 2013 The American Society of Human Genetics. Source


Simon A.J.,Cancer Research Center | Simon A.J.,Jeffrey Modell Foundation Center | Lev A.,Cancer Research Center | Lev A.,Jeffrey Modell Foundation Center | And 8 more authors.
Journal of Clinical Immunology | Year: 2014

Purpose: Chromosomal instability syndromes include a group of rare diseases characterized by defective DNA-damage-response and increased risk of chromosomal breakage. Patients display defects in the recognition and/or repair of DNA damage, with a subsequent high rate of malignancies and abnormal gene rearrangements. Other clinical manifestations, such as immunodeficiency, neurodevelopmental delay and skeletal abnormalities, are present in some of these syndromes. We studied a patient with profound T-lymphocyte defect, neurodevelopmental delay, facial dysmorphism, nephrotic syndrome and spondyloepiphyseal bone dysplasia typical of SIOD. Methods: Karyotype and chromosome fragility assays on patients' peripheral blood mononuclear cells showed an abnormal rate of spontaneous breaks. Cell cycle analysis of patient's fibroblasts following replication stress induced by hydroxyhurea revealed a delay in their release from S-phase to G2. When using higher concentrations of hydroxyhurea no patient fibroblast colonies could survive, compared with control fibroblasts. Whole-exome sequencing revealed novel compound heterozygote mutations in SMARCAL1 gene, resulting in putative frame shifts of encoded SMARCAL1 from each allele and no detected protein in patient's cells. The patient's youngest brother was found to have similar manifestations of SIOD but of less severity, including short stature, facial dysmorphism and typical osseous dysplasia, but no clinical findings suggestive of immunodeficiency and no chromosomal fragility. Similar to his sister, the brother carries both bi-allelic mutations in SMARCAL1 gene. Conclusions: We present here the first evidence of intrinsic chromosomal instability in a severe SMARCAL1-deficient patient with a clinical picture of SIOD. Our results are consistent with the recently outlined role of SMARCAL1 protein in DNA damage response. © 2013 Springer Science+Business Media New York. Source


Sarig O.,Tel Aviv Sourasky Medical Center | Nahum S.,Technion - Israel Institute of Technology | Rapaport D.,Tel Aviv University | Ishida-Yamamoto A.,Asahikawa University | And 18 more authors.
American Journal of Human Genetics | Year: 2012

Disproportionate short stature refers to a heterogeneous group of hereditary disorders that are classified according to their mode of inheritance, clinical skeletal and nonskeletal manifestations, and radiological characteristics. In the present study, we report on an autosomal-recessive osteocutaneous disorder that we termed SOFT (short stature, onychodysplasia, facial dysmorphism, and hypotrichosis) syndrome. We employed homozygosity mapping to locate the disease-causing mutation to region 3p21.1-3p21.31. Using whole-exome-sequencing analysis complemented with Sanger direct sequencing of poorly covered regions, we identified a homozygous point mutation (c.512T>C [p.Leu171Pro]) in POC1A (centriolar protein homolog A). This mutation was found to cosegregate with the disease phenotype in two families. The p.Leu171Pro substitution affects a highly conserved amino acid residue and is predicted to interfere with protein function. Poc1, a POC1A ortholog, was previously found to have a role in centrosome stability in unicellular organisms. Accordingly, although centrosome structure was preserved, the number of centrosomes and their distribution were abnormal in affected cells. In addition, the Golgi apparatus presented a dispersed morphology, cholera-toxin trafficking from the plasma membrane to the Golgi was aberrant, and large vesicles accumulated in the cytosol. Collectively, our data underscore the importance of POC1A for proper bone, hair, and nail formation and highlight the importance of normal centrosomes in Golgi assembly and trafficking from the plasma membrane to the Golgi apparatus. © 2012 The American Society of Human Genetics. Source

Discover hidden collaborations