Sunnyvale, CA, United States
Sunnyvale, CA, United States

Microchip Technology is an American manufacturer of microcontroller, memory and analog semiconductors. Its products include microcontrollers , Serial EEPROM devices, Serial SRAM devices, KEELOQ devices, radio frequency devices, thermal, power and battery management analog devices, as well as linear, interface and mixed signal devices.Some of the interface devices include USB, ZigBeetest facilities in Chachoengsao, Thailand. Sales for the fiscal year ending on March 31, 2014 were $1,931,217,000.Among its chief competitors are Analog Devices, Atmel, Freescale , Infineon, Maxim Integrated Products, NXP Semiconductors , Renesas Electronics, STMicroelectronics, and Texas Instruments. Wikipedia.


Time filter

Source Type

Patent
Silicon Storage Technology | Date: 2016-11-27

A non-volatile memory device comprises a semiconductor substrate of a first conductivity type. An array of non-volatile memory cells is located in the semiconductor substrate and arranged in a plurality of rows and columns. Each memory cell comprises a first region on a surface of the semiconductor substrate of a second conductivity type, and a second region on the surface of the semiconductor substrate of the second conductivity type. A channel region is between the first region and the second region. A word line overlies a first portion of the channel region and is insulated therefrom, and adjacent to the first region and having little or no overlap with the first region. A floating gate overlies a second portion of the channel region, is adjacent to the first portion, and is insulated therefrom and is adjacent to the second region. A coupling gate overlies the floating gate. A bit line is connected to the first region. During the operations of program, read, or erase, a negative voltage can be applied to the word lines and/or coupling gates of the selected or unselected memory cells.


A split gate NAND flash memory structure is formed on a semiconductor substrate of a first conductivity type. The NAND structure comprises a first region of a second conductivity type in the substrate with a second region of the second conductivity type in the substrate, spaced apart from the first region. A continuous first channel region is defined between the first region and the second region. A plurality of floating gates are spaced apart from one another with each positioned over a separate portion of the channel region. A plurality of control gates are provided with each associated with and adjacent to a floating gate. Each control gate has two portions: a first portion over a portion of the channel region and a second portion over the associated floating gate and capacitively coupled thereto.


Various embodiments for inhibiting the programming of memory cells coupled to unselected bit lines while programming a memory cell coupled to a selected bit line in a flash memory array are disclosed. Various embodiments for compensating for leakage current during the programming of memory cells coupled to a selected bit line in a flash memory array also are disclosed.


Patent
Silicon Storage Technology | Date: 2016-10-06

A memory device having a pair of conductive floating gates with inner sidewalls facing each other, and disposed over and insulated from a substrate of first conductivity type. A pair of spaced apart conductive control gates each disposed over and insulated from one of the floating gates, and each including inner sidewalls facing each other. A pair of first spacers of insulation material extending along control gate inner sidewalls and over the floating gates. The floating gate inner sidewalls are aligned with side surfaces of the first spacers. A pair of second spacers of insulation material each extend along one of the first spacers and along one of the floating gate inner sidewalls. A trench formed into the substrate having sidewalls aligned with side surfaces of the second spacers. Silicon carbon disposed in the trench. Material implanted into the silicon carbon forming a first region having a second conductivity type.


A method of forming split gate non-volatile memory cells on the same chip as logic and high voltage devices having HKMG logic gates. The method includes forming the source and drain regions, floating gates, control gates, and the poly layer for the erase gates and word line gates in the memory area of the chip. A protective insulation layer is formed over the memory area, and an HKMG layer and poly layer are formed on the chip, removed from the memory area, and patterned in the logic areas of the chip to form the logic gates having varying amounts of underlying insulation.


Patent
Silicon Storage Technology | Date: 2016-04-21

A circuit and method are disclosed for operating a non-volatile memory device, comprising time sampling a reference current or voltage in a floating holding node to obtain a hold voltage and applying the hold voltage in sensing circuitry.


Patent
Silicon Storage Technology | Date: 2016-05-25

A method of forming a memory device on a semiconductor substrate having a memory region (with floating and control gates), a first logic region (with first logic gates) and a second logic region (with second logic gates). A first implantation forms the source regions adjacent the floating gates in the memory region, and the source and drain regions adjacent the first logic gates in the first logic region. A second implantation forms the source and drain regions adjacent the second logic gates in the second logic region. A third implantation forms the drain regions adjacent the control gates in the memory region, and enhances the source region in the memory region and the source/drain regions in the first logic region. A fourth implantation enhances the source/drain regions in the second logic region.


Patent
Silicon Storage Technology | Date: 2016-09-07

A memory device that includes a plurality of ROM cells each having spaced apart source and drain regions formed in a substrate with a channel region therebetween, a first gate disposed over and insulated from a first portion of the channel region, a second gate disposed over and insulated from a second portion of the channel region, and a conductive line extending over the plurality of ROM cells. The conductive line is electrically coupled to the drain regions of a first subgroup of the ROM cells, and is not electrically coupled to the drain regions of a second subgroup of the ROM cells. Alternately, a first subgroup of the ROM cells each includes a higher voltage threshold implant region in the channel region, whereas a second subgroup of the ROM cells each lack any higher voltage threshold implant region in the channel region.


A memory device including a silicon semiconductor substrate, spaced apart source and drain regions formed in the substrate with a channel region there between, and a conductive floating gate disposed over a first portion of the channel region and a first portion of the source region. An erase gate includes a first portion that is laterally adjacent to the floating gate and over the source region, and a second portion that extends up and over the floating gate. A conductive word line gate is disposed over a second portion of the channel region. The word line gate is disposed laterally adjacent to the floating gate and includes no portion disposed over the floating gate. The thickness of insulation separating the word line gate from the second portion of the channel region is less than that of insulation separating the floating gate from the erase gate.


Patent
Silicon Storage Technology | Date: 2016-09-21

A three-dimensional flash memory system is disclosed.

Loading Silicon Storage Technology collaborators
Loading Silicon Storage Technology collaborators