Entity

Time filter

Source Type

Atlanta, GA, United States

Patent
Sila Nanotechnologies Inc | Date: 2014-03-21

A battery electrode composition is provided comprising anode and cathode electrodes and an electrolyte ionically coupling the anode and the cathode. At least one of the electrodes may comprise a plurality of active material particles provided to store and release ions during battery operation. The electrolyte may comprise an aqueous metal-ion electrolyte ionically interconnecting the active material particles. Further, the plurality of active material particles may comprise a conformal, metal-ion permeable coating at the interface between the active material particles and the aqueous metal-ion electrolyte. The conformal, metal-ion permeable coating impedes water decomposition at the aforesaid at least one of the electrodes.


A Li-ion battery cell, among other materials, components, and techniques, is provided that includes ion-permeable anode and cathode electrodes, an electrolyte ionically coupling the anode and the cathode, a separator electrically separating the anode and the cathode, and a sacrificial, high-capacity Li composition for providing Li to at least one of the electrodes.


Metal-ion battery cells are provided that take advantage of the disclosed doping process. The cells may be fabricated from anode and cathode electrodes, a separator, and an electrolyte. A metal-ion additive may be incorporated into (i) one or more of the electrodes, (ii) the separator, or (iii) the electrolyte. The metal-ion additive provides additional donor ions corresponding to the metal ions stored and released by anode and cathode active material particles. An activation potential may then be applied to the anode and cathode electrodes to release the additional donor ions into the battery cell.


A battery electrode composition is provided that comprises composite particles. Each composite particle may comprise, for example, active fluoride material and a nanoporous, electrically-conductive scaffolding matrix within which the active fluoride material is disposed. The active fluoride material is provided to store and release ions during battery operation. The storing and releasing of the ions may cause a substantial change in volume of the active material. The scaffolding matrix structurally supports the active material, electrically interconnects the active material, and accommodates the changes in volume of the active material.


Patent
Sila Nanotechnologies Inc | Date: 2013-02-28

A microporous carbon matrix material composition for use in supercapacitor electrodes may be produced by depositing carbon on a sacrificial zeolite template via one of several methods (e.g., hydrothermal or solvo-thermal deposition, sub-atmospheric vapor phase deposition, or high-pressure infiltration of hydrocarbon vapors). The deposition produces a carbon-coated zeolite intermediary. A surface layer of carbon formed on the carbon-coated zeolite intermediary may then be refined and the refined carbon-coated zeolite intermediary may be etched to produce a microporous carbon matrix having a substantially uniform structure and substantially aligned pores. In some embodiments, the carbon-coated zeolite intermediary may be annealed after deposition.

Discover hidden collaborations