Time filter

Source Type

Kaneko T.,Siebens Drake Research Institute | Huang H.,Siebens Drake Research Institute | Huang H.,University of Toronto | Zhao B.,Siebens Drake Research Institute | And 7 more authors.
Science Signaling | Year: 2010

Cellular functions require specific protein-protein interactions that are often mediated by modular domains that use binding pockets to engage particular sequence motifs in their partners. Yet, how different members of a domain family select for distinct sequence motifs is not fully understood. The human genome encodes 120 Src homology 2 (SH2) domains (in 110 proteins), which mediate protein-protein interactions by binding to proteins with diverse phosphotyrosine (pTyr)-containing sequences. The structure of the SH2 domain of BRDG1 bound to a peptide revealed a binding pocket that was blocked by a loop residue in most other SH2 domains. Analysis of 63 SH2 domain structures suggested that the SH2 domains contain three binding pockets, which exhibit selectivity for the three positions after the pTyr in a peptide, and that SH2 domain loops defined the accessibility and shape of these pockets. Despite sequence variability in the loops, we identified conserved structural features in the loops of SH2 domains responsible for controlling access to these surface pockets. We engineered new loops in an SH2 domain that altered specificity as predicted. Thus, selective blockage of binding subsites or pockets by surface loops provides a molecular basis by which the diverse modes of ligand recognition by the SH2 domain may have evolved and provides a framework for engineering SH2 domains and designing SH2-specific inhibitors. Copyright © 2010 American Association for the Advancement of Science.

Hoare A.,University of Chile | Bravo D.,University of Chile | Martinic M.,University of Chile | Valvano M.A.,Siebens Drake Research Institute | And 2 more authors.
Biological Research | Year: 2012

Shigella flexneri causes bacillary dysentery in humans. Essential to the establishment of the disease is the invasion of the colonic epithelial cells. Here we investigated the role of the lipopolysaccharide (LPS) O antigen in the ability of S. flexneri to adhere to and invade polarized Caco-2 cells. The S. flexneri 2a O antigen has two preferred chain lengths: a short O antigen (S-OAg) regulated by the WzzB protein and a very long O antigen (VL-OAg) regulated by WzzpHS2. Mutants with defined deletions of the genes required for O-antigen assembly and polymerization were constructed and assayed for their abilities to adhere to and enter cultured epithelial cells. The results show that both VL- and S-OAg are required for invasion through the basolateral cell membrane. In contrast, the absence of O antigen does not impair adhesion. Purified LPS does not act as a competitor for the invasion of Caco-2 cells by the wild-type strain, suggesting that LPS is not directly involved in the internalization process by epithelial cells.

Patel K.B.,Siebens Drake Research Institute | Furlong S.E.,Siebens Drake Research Institute | Valvano M.A.,Siebens Drake Research Institute | Valvano M.A.,University of Western Ontario
Glycobiology | Year: 2010

WbaP catalyzes the transfer of galactose-1-phosphate onto undecaprenyl phosphate (Und-P). The enzyme belongs to a large family of bacterial membrane proteins required for initiation of the synthesis of O antigen lipopolysaccharide and polysaccharide capsules. Previous work in our laboratory demonstrated that the last transmembrane helix and C-terminal tail region of WbaP (WbaPCT) are sufficient for enzymatic activity. Here, we demonstrate the cytoplasmic location of the WbaP C-terminal tail and show that WbaPCT domain N-terminally fused to thioredoxin (TrxAWbaPCT) exhibits improved protein folding and enhanced transferase activity. Alanine replacement of highly conserved charged or polar amino acids identified seven critical residues for enzyme activity in vivo and in vitro. Four of these residues are located in regions predicted to be α-helical. These regions and their secondary structure predictions are conserved in distinct WbaP family members, suggesting they may contribute to form a conserved catalytic center. © The Author 2010. Published by Oxford University Press. All rights reserved.

Loading Siebens Drake Research Institute collaborators
Loading Siebens Drake Research Institute collaborators