Entity

Time filter

Source Type

Erlangen, Germany

A silicon-carbide volume monocrystal is produced with a specific electrical resistance of at least 10


A method is used to produce a bulk SiC single crystal. A seed crystal is arranged in a crystal growth region of a growing crucible. An SiC growth gas phase is produced in the crystal growth region. The bulk SiC single crystal having a central longitudinal mid-axis grows by deposition from the SiC growth gas phase, the deposition taking place on a growth interface of the growing bulk SiC single crystal. The SiC growth gas phase is at least partially fed from an SiC source material and contains at least one dopant from the group of nitrogen, aluminum, vanadium and boron. At least in a central main growth region of the growth interface arranged about the longitudinal mid-axis, a lateral temperature gradient of at most 2 K/cm measured perpendicular to the longitudinal mid-axis is adjusted and maintained in this range. The bulk SiC single crystal has a large facet region.


Patent
SiCrystal AG | Date: 2012-07-31

A bulk AlN single crystal is grown on a monocrystalline AlN seed crystal having a central longitudinal mid-axis and disposed in a crystal growth region of a growing crucible. The bulk AlN single crystal grows parallel to the longitudinal mid-axis by deposition on the AlN seed crystal. The crucible has a lateral crucible inner wall extending in the growth direction. A free space is formed between the AlN crystals and the lateral crucible inner wall. Bulk AlN single crystals and monocrystalline AlN substrates produced therefrom are obtained with only few dislocations, which are substantially distributed homogeneously. Growing crucibles are provided with a crucible lid with a gap formed between an inner growing crucible and the crucible lid through which some of the AlN growth gas phase generated inside the crystal growth region escapes and is deposited on a bottom of an outer growing crucible opposite the lid.


A bulk AlN single crystal is grown on a monocrystalline AlN seed crystal having a central longitudinal mid-axis and disposed in a crystal growth region of a growing crucible. The bulk AlN single crystal grows in a growth direction oriented parallel to the longitudinal mid-axis by deposition on the AlN seed crystal. The crucible has a lateral crucible inner wall extending in the growth direction, a free space being provided between the AlN seed crystal and the growing bulk AlN single crystal on the one hand, and the lateral crucible inner wall on the other hand. Bulk AlN single crystals and monocrystalline AlN substrates produced therefrom are therefore obtained with only few dislocations, which furthermore are substantially distributed homogeneously. The growing crucible, inside which the crystal growth region is located, is an inner growing crucible which is arranged in an outer growing crucible. The two growing crucibles are provided with a crucible lid with a gap formed between the inner growing crucible and the crucible lid through which some of the AlN growth gas phase generated inside the crystal growth region escapes and is deposited on a crucible bottom of the outer growing crucible which lies opposite the crucible lid.


A configuration for producing a bulk SiC crystal includes a growing crucible having an electrically conductive crucible wall, an inductive heating device disposed outside the growing crucible for inductively coupling an electric current, which heats the growing crucible, into the crucible wall, and an insulation layer disposed between the crucible wall and the inductive heating device. The insulation layer is formed of a graphite insulation material having short carbon fibers with a fiber length in a range of between 1 mm and 10 mm and a fiber diameter in a range of between 0.1 mm and 1 mm. A method for producing a bulk SiC crystal is also provided.

Discover hidden collaborations