Shrub science Laboratory

Provo, United States

Shrub science Laboratory

Provo, United States

Time filter

Source Type

Friggens M.M.,Forestry science Laboratory | Warwell M.V.,Forestry science Laboratory | Chambers J.C.,Great Basin | Kitchen S.G.,Shrub science Laboratory
USDA Forest Service - General Technical Report RMRS-GTR | Year: 2012

Recent research and species distribution modeling predict large changes in the distributions of species and vegetation types in the western interior of the United States in response to climate change. This volume reviews existing climate models that predict species and vegetation changes in the western United States, and it synthesizes knowledge about climate change impacts on the native fauna and flora of grasslands, shrublands and deserts of the interior American West. Species' responses will depend not only on their physiological tolerances but also on their phenology, establishment properties, biotic interactions, and capacity to evolve and migrate. The volume is divided into eight chapters that cover the topics of carbon mitigation and adaptation. Current and likely responses of species and habitats to climate change are examined in relation to taxonomic group and ecoregion and with regard to other disturbances. The volume ends with a review of management decision support needs and tools for assessing vulnerability of natural resources and conserving and restoring ecosystems that are or may be impacted by climate change. © Larry Jones.


Hawkins K.K.,Brigham Young University | Allen P.,Brigham Young University | Meyer S.,Shrub science Laboratory
Plant Protection Science | Year: 2013

Bromus tectorum is a highly invasive annual grass. The fungal pathogen Pyrenophora semeniperda can kill a large fraction of B. tectorum seeds. Outcomes in this pathosystem are often determined by the speed of seed germination. In this paper we extend previous efforts to describe the pathosystem by characterising secondary dormancy acquisition of B. tectorum. In the laboratory approximately 80% of seeds incubated at -1.0 MPa became dormant. In the field, seeds were placed in the seed bank in late autumn, retrieved monthly and dormancy status determined. The field study confirmed the laboratory results; ungerminated seeds became increasingly dormant. Our data suggest that secondary dormancy is much more likely to occur at xeric sites.


Richardson B.A.,Shrub science Laboratory | Shaw N.L.,Aquatic science Laboratory | Pendleton R.L.,Forestry science Laboratory
USDA Forest Service - General Technical Report RMRS-GTR | Year: 2012

Recent research and species distribution modeling predict large changes in the distributions of species and vegetation types in the western interior of the United States in response to climate change. This volume reviews existing climate models that predict species and vegetation changes in the western United States, and it synthesizes knowledge about climate change impacts on the native fauna and flora of grasslands, shrublands and deserts of the interior American West. Species' responses will depend not only on their physiological tolerances but also on their phenology, establishment properties, biotic interactions, and capacity to evolve and migrate. The volume is divided into eight chapters that cover the topics of carbon mitigation and adaptation. Current and likely responses of species and habitats to climate change are examined in relation to taxonomic group and ecoregion and with regard to other disturbances. The volume ends with a review of management decision support needs and tools for assessing vulnerability of natural resources and conserving and restoring ecosystems that are or may be impacted by climate change. © Larry Jones.


Meyer S.E.,Shrub science Laboratory
USDA Forest Service - General Technical Report RMRS-GTR | Year: 2012

Recent research and species distribution modeling predict large changes in the distributions of species and vegetation types in the western interior of the United States in response to climate change. This volume reviews existing climate models that predict species and vegetation changes in the western United States, and it synthesizes knowledge about climate change impacts on the native fauna and flora of grasslands, shrublands and deserts of the interior American West. Species' responses will depend not only on their physiological tolerances but also on their phenology, establishment properties, biotic interactions, and capacity to evolve and migrate. The volume is divided into eight chapters that cover the topics of carbon mitigation and adaptation. Current and likely responses of species and habitats to climate change are examined in relation to taxonomic group and ecoregion and with regard to other disturbances. The volume ends with a review of management decision support needs and tools for assessing vulnerability of natural resources and conserving and restoring ecosystems that are or may be impacted by climate change. © Larry Jones.


Runyon J.B.,Forestry science Laboratory | Butler J.L.,Forest and Grassland Research Laboratory | Friggens M.M.,Forestry science Laboratory | Meyer S.E.,Shrub science Laboratory | Sing S.E.,Forestry science Laboratory
USDA Forest Service - General Technical Report RMRS-GTR | Year: 2012

Recent research and species distribution modeling predict large changes in the distributions of species and vegetation types in the western interior of the United States in response to climate change. This volume reviews existing climate models that predict species and vegetation changes in the western United States, and it synthesizes knowledge about climate change impacts on the native fauna and flora of grasslands, shrublands and deserts of the interior American West. Species' responses will depend not only on their physiological tolerances but also on their phenology, establishment properties, biotic interactions, and capacity to evolve and migrate. The volume is divided into eight chapters that cover the topics of carbon mitigation and adaptation. Current and likely responses of species and habitats to climate change are examined in relation to taxonomic group and ecoregion and with regard to other disturbances. The volume ends with a review of management decision support needs and tools for assessing vulnerability of natural resources and conserving and restoring ecosystems that are or may be impacted by climate change. © Larry Jones.

Loading Shrub science Laboratory collaborators
Loading Shrub science Laboratory collaborators