Salt Lake City, Utah, United States
Salt Lake City, Utah, United States

Time filter

Source Type

Stevenson D.A.,University of Utah | Allen S.,University of Utah | Tidyman W.E.,University of California at San Francisco | Carey J.C.,University of Utah | And 9 more authors.
Muscle and Nerve | Year: 2012

Introduction: RASopathies are a group of genetic conditions due to alterations of the Ras/MAPK pathway. Neurocutaneous findings are hallmark features of the RASopathies, but musculoskeletal abnormalities are also frequent. The objective was to evaluate handgrip strength in the RASopathies. Methods: Individuals with RASopathies (e.g., Noonan syndrome, Costello syndrome, cardio-facio-cutaneous [CFC] syndrome, and neurofibromatosis type 1 [NF1]) and healthy controls were evaluated. Two methods of handgrip strength were tested: GRIP-D Takei Hand Grip Dynamometer and the Martin vigorimeter. A general linear model was fitted to compare average strength among the groups, controlling for confounders such as age, gender, height, and weight. Results: Takei dynamometer: handgrip strength was decreased in each of the syndromes compared with controls. Decreased handgrip strength compared with sibling controls was also seen with the Martin vigorimeter (P < 0.0001). Conclusions: Handgrip strength is decreased in the RASopathies. The etiology of the reduced muscle force is unknown, but likely multifactorial. © 2012 Wiley Periodicals, Inc.


Stevenson D.,University of Utah | Stevenson D.,Shriners Hospital for Children Salt Lake City | Schwarz E.,Arup | Carey J.,University of Utah | And 16 more authors.
Clinical Genetics | Year: 2011

Disorders of the Ras/mitogen-activated protein kinase (MAPK) pathway have an overlapping skeletal phenotype (e.g. scoliosis, osteopenia). The Ras proteins regulate cell proliferation and differentiation and neurofibromatosis type 1 (NF1) individuals have osteoclast hyperactivity and increased bone resorption as measured by urine pyridinium crosslinks [pyridinoline (Pyd) and deoxypyridinoline (Dpd)]. Pyd and Dpd are hydroxylysine-derived crosslinks of collagen found in bone and cartilage and excreted in the urine. Dpd is most abundant in bone. The aim of this study was to evaluate if other syndromes of the Ras/MAPK pathway have increased bone resorption, which may impact the skeletal phenotype. Participants were individuals with Noonan syndrome (n = 14), Costello syndrome (n = 21), and cardiofaciocutaneous (CFC) syndrome (n = 14). Pyridinium crosslinks from two consecutive first morning urines were extracted after acid hydrolysis and analyzed by high performance liquid chromatography. Three separate analyses of covariance were performed to compare Pyd, Dpd, and Dpd/Pyd ratio of each group to controls after controlling for age. Data were compared to 99 healthy controls. The Dpd and the Dpd/Pyd ratio were elevated (p < 0.0001) in all three conditions compared to controls suggesting that collagen degradation was predominantly from bone. The data suggest that the Ras/MAPK signal transduction pathway is important in bone homeostasis. © 2011 John Wiley & Sons A/S.


Sant D.W.,Arup | Margraf R.L.,Arup | Stevenson D.A.,University of Utah | Grossmann A.H.,University of Utah | And 7 more authors.
Journal of Medical Genetics | Year: 2015

Background Tibial pseudarthrosis is associated with neurofibromatosis type 1 (NF1) and there is wide clinical variability of the tibial dysplasia in NF1, suggesting the possibility of genetic modifiers. Double inactivation of NF1 is postulated to be necessary for the development of tibial pseudarthrosis, but tissue or cell of origin of the 'second hit' mutation remains unclear. Methods Exome sequencing of different sections of surgically resected NF1 tibial pseudarthrosis tissue was performed and compared to germline (peripheral blood). Results A germline NF1 splice site mutation (c.61-2A>T, p.L21 M68del) was identified from DNA extracted from peripheral blood. Exome sequencing of DNA extracted from tissue removed during surgery of the tibial pseudarthrosis showed a somatic mutation of NF1 (c.3574G>T, p.E1192*) in the normal germline allele. Further analysis of different regions of the tibial pseudarthrosis sample showed enrichment of the somatic mutation in the soft tissue within the pseudarthrosis site and absence of the somatic mutation in cortical bone. In addition, a germline variant in PTPN11 (c.1658C>T, p.T553M), a gene involved in the RAS signal transduction pathway was identified, although the clinical significance is unknown. Conclusions Given that the NF1 somatic mutation was primarily detected in the proliferative soft tissue at the pseudarthrosis site, it is likely that the second hit occurred in mesenchymal progenitors from the periosteum. These results are consistent with a defect of differentiation, which may explain why the mutation is found in proliferative cells and not within cortical bone tissue, as the latter by definition contains mostly mature differentiated osteoblasts and osteocytes. © 2015 by the BMJ Publishing Group Ltd.


Stevenson D.A.,University of Utah | Stevenson D.A.,Shriners Hospital for Children Salt Lake City | Viskochil D.H.,University of Utah | Viskochil D.H.,Shriners Hospital for Children Salt Lake City | And 13 more authors.
Journal of Pediatric Endocrinology and Metabolism | Year: 2011

Objective: Low 25-hydroxyvitamin D (25OHD) concentrations have been associated with tumors and osteopenia or fractures in adults with neurofibromatosis type 1 (NF1). We report 25OHD concentrations in 109 children with NF1 and 218 controls matched for age, sex, geographic location, and time of year. Methods: Children with NF1 were recruited (n=109; 2-17 years), and clinical data and dual-energy X-ray absorptiometry measurements were obtained. 25OHD concentrations were measured in subjects and controls. Results: More NF1 individuals (50%) were in the 25OHD insufficient or deficient range (<30 ng/mL) (1 ng/mL=2.496 nmol/L) compared to controls (36%) (p=0.0129). 25OHD concentrations were higher in individuals with neurofibromas after controlling for age (p=0.0393), and were negatively associated with whole-body subtotal bone mineral density (BMD) z-scores (p=0.0385). Conclusions: More children with NF1 had 25OHD concentrations <30 ng/mL, potentially because of increased pigmentation and/or decreased sunlight exposure. In contrast to adults, decreased 25OHD concentrations were not associated with neurofibromas, and there was no positive association between 25OHD and BMD. © 2011 by Walter de Gruyter Berlin New York 2011.


Sant D.W.,Arup | Margraf R.L.,Arup | Stevenson D.A.,Stanford University | Stevenson D.A.,University of Utah | And 12 more authors.
Journal of Medical Genetics | Year: 2015

Background: Tibial pseudarthrosis is associated with neurofibromatosis type 1 (NF1) and there is wide clinical variability of the tibial dysplasia in NF1, suggesting the possibility of genetic modifiers. Double inactivation of NF1 is postulated to be necessary for the development of tibial pseudarthrosis, but tissue or cell of origin of the 'second hit' mutation remains unclear. Methods: Exome sequencing of different sections of surgically resected NF1 tibial pseudarthrosis tissue was performed and compared to germline ( peripheral blood). Results: A germline NF1 splice site mutation (c.61- 2A>T, p.L21 M68del) was identified from DNA extracted from peripheral blood. Exome sequencing of DNA extracted from tissue removed during surgery of the tibial pseudarthrosis showed a somatic mutation of NF1 (c.3574G>T, p.E1192*) in the normal germline allele. Further analysis of different regions of the tibial pseudarthrosis sample showed enrichment of the somatic mutation in the soft tissue within the pseudarthrosis site and absence of the somatic mutation in cortical bone. In addition, a germline variant in PTPN11 (c.1658C>T, p.T553M), a gene involved in the RAS signal transduction pathway was identified, although the clinical significance is unknown. Conclusions: Given that the NF1 somatic mutation was primarily detected in the proliferative soft tissue at the pseudarthrosis site, it is likely that the second hit occurred in mesenchymal progenitors from the periosteum. These results are consistent with a defect of differentiation, which may explain why the mutation is found in proliferative cells and not within cortical bone tissue, as the latter by definition contains mostly mature differentiated osteoblasts and osteocytes.

Loading Shriners Hospital for Children Salt Lake City collaborators
Loading Shriners Hospital for Children Salt Lake City collaborators