Time filter

Source Type

Chang B.,Japan National Institute of Infectious Diseases | Taguri T.,Nagasaki Prefectural Institute for Environmental Research and Public Health | Sugiyama K.,Shizuoka Institute of Environment and Hygiene | Amemura-Maekawa J.,Japan National Institute of Infectious Diseases | And 2 more authors.
Japanese Journal of Infectious Diseases | Year: 2010

Ethidium monoazide (EMA) and propidium monoazide (PMA) have been utilized for selective PCR amplification of DNA from viable bacterial cells. In this study, we compared the abilities of EMA and PMA, together with real-time PCR, to specifically distinguish dead Legionella cells from viable cells. Several experiments showed that PMA or EMA treatment could specifically prevent the PCR amplification of DNA from dead Legionella cells in water samples. However, a 4-fold higher concentration of PMA than EMA was required to achieve this effect. EMA may therefore be more useful for practical environmental investigations of Legionella.

Oikawa T.,University of Shizuoka | Unno Y.,University of Shizuoka | Matsuno K.,University of Shizuoka | Sawada J.-i.,University of Shizuoka | And 3 more authors.
Biochemical and Biophysical Research Communications | Year: 2010

The protein Survivin is selectively overexpressed in a variety of cancers, but not in normal tissues. It has been reported to be involved in cell survival and cell division. However, the molecular mechanisms involved in its function are not clear, although several binding partner proteins have been proposed to date. Here, we report the identification of a novel small molecule Survivin antagonist, which disrupts the Survivin-Smac/DIABLO interaction in cells. In order to identify Survivin-directed antagonists, we developed a high-throughput screening system based on AlphaScreen technology, which allows the identification of small molecules with the ability to inhibit the interaction of Survivin with Smac/DIABLO or INCENP in vitro. We screened chemical libraries, generated in-house, using this system and identified a 5-deazaflavin analog (compound 1) as a hit compound that selectively inhibited the interaction of Survivin with Smac/DIABLO but not INCENP. In cultured cells, compound 1 abrogated the formation of the complex between Survivin and Smac/DIABLO. In addition, this compound was able to sensitize cultured cells to doxorubicin-mediated DNA damage stress and synergistically enhance apoptotic cell death. Thus, the small-molecule inhibitor described here may serve as a proof-of-principle agent for discriminating between the multiple functions of Survivin. © 2010 Elsevier Inc. All rights reserved.

Hiroi M.,Shizuoka Institute of Environment and Hygiene
Japanese journal of infectious diseases | Year: 2012

The serotype, Shiga toxin (Stx) type, and antimicrobial resistance patterns of 138 Stx-producing Escherichia coli (STEC) strains isolated from humans between 2003 and 2007 in Shizuoka Prefecture, Japan were characterized. The predominant O serogroups of the STEC isolates were O157, O26, and O111. Antimicrobial susceptibility testing of the STEC isolates showed that 31 of the 138 isolates (22.5%) were resistant to antibiotics. Compared to the results reported in the previous studies, a higher rate of STEC O157 isolates were susceptible to all the antimicrobial agents used in this study. However, antimicrobial susceptibility data from this study showed that antimicrobial resistance patterns have increased by 6 compared to the survey performed by Masuda et al. between 1987 and 2002 (Jpn. J. Food Microbiol., 21, 44-51, 2004). This indicates that STEC isolates have evolved to show a variety of antimicrobial resistance patterns. It is important to consider the population of isolates showing decreased susceptibility to clinically relevant drugs such as ciprofloxacin (CPFX) and fosfomycin (FOM). All the 3 STEC isolates resistant to nalidixic acid showed low susceptibility to CPFX (MIC, 0.25-0.5 μg/ml). In addition, a decreased susceptibility to FOM was clearly observed in the E. coli O26 isolates. Our findings also showed that 1 STEC O26 strain could possibly be a chromosomal AmpC β-lactamase hyperproducer. These results suggest that antimicrobial therapy may be less effective in patients with non-O157 STEC infections than in those with STEC O157 infections.

Ohashi N.,University of Shizuoka | Gaowa,University of Shizuoka | Wuritu,University of Shizuoka | Kawamori F.,University of Shizuoka | And 13 more authors.
Emerging Infectious Diseases | Year: 2013

We retrospectively confirmed 2 cases of human Anaplasma phagocytophilum infection. Patient blood samples contained unique p44/msp2 for the pathogen, and antibodies bound to A. phagocytophilum antigens propagated in THP-1 rather than HL60 cells. Unless both cell lines are used for serodiagnosis of rickettsiosis-like infections, cases of human granulocytic anaplasmosis could go undetected.

Ashizawa T.,Shizuoka Cancer Center Research Institute | Miyata H.,Shizuoka Cancer Center Research Institute | Ishii H.,Shizuoka Cancer Center Research Institute | Oshita C.,Shizuoka Cancer Center Research Institute | And 8 more authors.
International Journal of Oncology | Year: 2011

Signal transducer and activator of transcription (STAT)3, a member of a family of DNA-binding molecules mediating numerous physiological and oncogenic signaling pathways, is a novel target in cancer cells which show high phosphorylation of STAT3. Recently, we identified a novel small-molecule inhibitor of STAT3 dimerization, STX-0119, as a cancer therapeutic. We investigated the mechanisms responsible for the antitumor activity in vitro and in vivo through numerous biochemical and biological assays. Specifically, the effects of STX-0119 on target genes (c-myc, cyclin D1, survivin) and apoptosis induction were analyzed in tumors treated with STX-0119 in vivo. STX-0119 showed strong growth-inhibitory activity against a broad range of hematological cancer cell lines, particularly lymphomas. STX-0119 suppressed the growth of SCC3 cells, a human lymphoma cell line with highly activated STAT3, through apoptosis and down-regulation of STAT3 targets such as c-myc, cyclin D1, survivin and Bcl-xL. Notably, Tyr-705-phosphorylated STAT3 up-regulation was not significantly suppressed by STX-0119, as opposed to other STAT3 inhibitors. STX-0119 demonstrated potent antitumor effects in vivo in SCC3-bearing nude mice by way of the down-regulation of STAT3 target genes and induction of apoptosis in the tumors. Thus, STX-0119 may be a new type of STAT3 inhibitor exhibiting strong antitumor activity. Copyright © 2011 Spandidos Publications Ltd. All rights reserved.

Discover hidden collaborations