Entity

Time filter

Source Type


Lee J.H.,Harvard University | Lee J.H.,Yonsei University | Chen H.,Harvard University | Kolev V.,Harvard University | And 8 more authors.
Experimental Dermatology | Year: 2014

Skin pigmentation is a complex process including melanogenesis within melanocytes and melanin transfer to the keratinocytes. To develop a comprehensive screening method for novel pigmentation regulators, we used immortalized melanocytes and keratinocytes in co-culture to screen large numbers of compounds. High-throughput screening plates were subjected to digital automated microscopy to quantify the pigmentation via brightfield microscopy. Compounds with pigment suppression were secondarily tested for their effects on expression of microphthalmia transcription factor (MITF) and several pigment regulatory genes, and further validated in terms of non-toxicity to keratinocytes/melanocytes and dose-dependent activity. The results demonstrate a high-throughput, high-content screening approach, which is applicable to the analysis of large chemical libraries using a co-culture system. We identified candidate pigmentation inhibitors from 4000 screened compounds including zoxazolamine, 3-methoxycatechol and alpha-mangostin, which were also shown to modulate expression of MITF and several key pigmentation factors and are worthy of further evaluation for potential translation to clinical use. © 2014 John Wiley & Sons A/S. Source


Hasegawa T.,Shiseido Life Science Research Center | Nakashima M.,Shiseido Life Science Research Center | Suzuki Y.,Shiseido Life Science Research Center
Biochemical and Biophysical Research Communications | Year: 2016

Ultraviolet (UV) radiation in sunlight can result in DNA damage and an inflammatory reaction of the skin commonly known as sunburn, which in turn can lead to cutaneous tissue disorders. However, little has been known about how UV-induced DNA damage mediates the release of inflammatory mediators from keratinocytes. Here, we show that UVB radiation intensity-dependently increases NLRP3 gene expression and IL-1β production in human keratinocytes. Knockdown of NLRP3 with siRNA suppresses UVB-induced production of not only IL-1β, but also other inflammatory mediators, including IL-1α, IL-6, TNF-α, and PGE2. In addition, inhibition of DNA damage repair by knockdown of XPA, which is a major component of the nucleotide excision repair system, causes accumulation of cyclobutane pyrimidine dimer (CPD) and activation of NLRP3 inflammasome. In vivo immunofluorescence analysis confirmed that NLRP3 expression is also elevated in UV-irradiated human epidermis. Overall, our findings indicate that UVB-induced DNA damage initiates NLRP3 inflammasome activation, leading to release of various inflammatory mediators from human keratinocytes. © 2016 Elsevier Inc. Source


Hibino T.,Shiseido Life Science Research Center | Fujita E.,National Institute of Neuroscience | Tsuji Y.,Shiseido Life Science Research Center | Nakanishi J.,Shiseido Life Science Research Center | And 3 more authors.
Journal of Cellular Biochemistry | Year: 2010

Restricted expression of caspase-14 in differentiating keratinocytes suggests the involvement of caspase-14 in terminal differentiation. We purified active caspase-14 from human cornified cells with sequential chromatographic procedures. Specific activity increased 764-fold with a yield of 9.1%. Purified caspase-14 revealed the highest activity on WEHD-methylcoumaryl-amide (MCA), although YVAD-MCA, another caspase-1 substrate, was poorly hydrolyzed. The purified protein was a heterodimer with 17 and 11 kDa subunits. N-terminal and C-terminal analyses demonstrated that the large subunit consisted of Ser 6-Asp146 and N-terminal of small subunit was identified as Lys153. We successfully developed an antiserum (anti-h14D146) directed against the Asp146 cleavage site, which reacted only with active caspase-14 but not with procaspase-14. Furthermore we confirmed that anti-h14D146 did not show any reactivity to the active forms of other caspases. Immunohistochemical analysis demonstrated that anti-h14D146 staining was mostly restricted to the cornified layer and co-localized with some of the TUNEL positive-granular cells in the normal human epidermis. UV radiation study demonstrated that caspase-3 was activated and co-localized with TUNEL-positive cells in the middle layer of human epidermis. In contrast, we could not detect caspase-14 activation in response to UV. Our study revealed tightly regulated action of caspase-14, in which only the terminal differentiation of keratinocytes controls its activation process. © 2009 Wiley-Liss, Inc. Source

Discover hidden collaborations