Shenzhen Kivita Innovative Drug Discovery Institute

Shenzhen, China

Shenzhen Kivita Innovative Drug Discovery Institute

Shenzhen, China
SEARCH FILTERS
Time filter
Source Type

Wu J.,Tsinghua University | Tan C.,Tsinghua University | Chen Z.,Tsinghua University | Chen Y.Z.,Shenzhen Kivita Innovative Drug Discovery Institute | And 2 more authors.
Analyst | Year: 2016

A sensor array consisting of six cationic fluorescent conjugated polyelectrolytes (CPEs) is reported, which could readily differentiate between nine closely related hydrophilic nitroaromatics (NACs) in separate aqueous solutions by fluorescence pattern recognition and linear discrimination analysis (LDA). © 2016 The Royal Society of Chemistry.


He S.,Tsinghua University | Qu L.,Tsinghua University | Qu L.,McMaster University | Shen Z.,McMaster University | And 5 more authors.
Analytical Chemistry | Year: 2015

Breast cancer is one of the most commonly diagnosed cancers among females worldwide. Early detection of breast cancer is of vital importance to the reduction of the mortality rate. However, the lack of specific biomarkers that can effectively identify breast cancer cells limits the ability for early diagnosis of breast cancer. RNA-cleaving fluorogenic DNAzymes (RFDs), which can be produced through the systematic evolution of ligands by exponential enrichment (SELEX) process, are catalytic DNA molecules capable of generating a fluorescent signal when the appropriate target is bound. In this study, we carried out a SELEX experiment to select for RFDs that are active in the cell lysate of MDA-MB-231, a model breast cancer cell line. We obtained a RFD probe, named AAI2-5, that can detect MDA-MB-231 at a concentration of cell lysate proteins as low as 0.5 μg/mL (which is equivalent to ∼5000 cell/mL). AAI2-5 is capable of distinguishing MDA-MB-231 cells from normal cells as well as other types of tumor cells, including other subtypes of breast cancer cells. Moreover, AAI2-5 responded positively to more than 90% of malignant breast tumors. This report is the first study to explore the RFD system for the detection of cancer cells. The results suggest that RFD can be potentially applied for the diagnosis and treatment of breast cancer in the future. © 2014 American Chemical Society.


Ding C.,Tsinghua University | Zhang C.,Tsinghua University | Zhang C.,Shenzhen Kivita Innovative Drug Discovery Institute | Zhang M.,Tsinghua University | And 4 more authors.
Future Medicinal Chemistry | Year: 2014

Seven VEGFR small-molecule inhibitors have been approved by the US FDA as anticancer drugs, which confirms the therapeutic value of angiogenesis inhibitors. However, much more evidence indicates that VEGFR inhibition alone is usually not sufficient to block the tumor progress. The potential of some agents targeting VEGFR owes partially to the simultaneous inhibition of additional targets in other signaling pathways. In this review, the crosstalk between VEGFR2 and the additional targets in other signaling pathways, such as EGFR, MET, FGFR, PDGFR, c-Kit, Raf, PI3K and HDAC, and the synergistic effects derived from multitarget activities against these crosstalks are discussed. We also briefly describe the multitarget inhibitors in clinical trials or reported in the literature and patents under the different multitarget categories involving VEGFR2. © 2014 Future Science Ltd.


Zheng J.,Tsinghua University | Tan C.,Tsinghua University | Xue P.,Tsinghua University | Cao J.,Shenzhen Kivita Innovative Drug Discovery Institute | And 3 more authors.
Biochemical and Biophysical Research Communications | Year: 2016

Ubiquitination proteasome pathway (UPP) is the most important and selective way to degrade proteins in vivo. Here, a novel proteolysis targeting peptide (PROTAP) strategy, composed of a target protein binding peptide, a linker and a ubiquitin E3 ligase recognition peptide, was designed to recruit both target protein and E3 ligase and then induce polyubiquitination and degradation of the target protein through UPP. In our study, the PROTAP strategy was proved to be a general method with high specificity using Bcl-xL protein as model target in vitro and in cells, which indicates that the strategy has great potential for in vivo application. © 2016 Elsevier Inc. All rights reserved.


Chu B.,Tsinghua University | Liu F.,Tsinghua University | Li L.,Tsinghua University | Ding C.,Tsinghua University | And 6 more authors.
Cell death & disease | Year: 2015

Aberrant expression or function of epidermal growth factor receptor (EGFR) or the closely related human epidermal growth factor receptor 2 (HER2) can promote cell proliferation and survival, thereby contributing to tumorigenesis. Specific antibodies and low-molecular-weight tyrosine kinase inhibitors of both proteins are currently in clinical trials for cancer treatment. Benzimidazole derivatives possess diverse biological activities, including antitumor activity. However, the anticancer mechanism of 5a (a 2-aryl benzimidazole compound; 2-chloro-N-(2-p-tolyl-1H-benzo[d]imidazol-5-yl)acetamide, C(16)H(14)ClN(3)O, MW299), a novel 2-aryl benzimidazole derivative, toward breast cancer is largely unknown. Here, we demonstrate that 5a potently inhibited both EGFR and HER2 activity by reducing EGFR and HER2 tyrosine phosphorylation and preventing downstream activation of PI3K/Akt and MEK/Erk pathways in vitro and in vivo. We also show that 5a inhibited the phosphorylation of FOXO and promoted FOXO translocation from the cytoplasm into the nucleus, resulting in the G1-phase cell cycle arrest and apoptosis. Moreover, 5a potently induced apoptosis via the c-Jun N-terminal kinase (JNK)-mediated death receptor 5 upregulation in breast cancer cells. The antitumor activity of 5a was consistent with additional results demonstrating that 5a significantly reduced tumor volume in nude mice in vivo. Analysis of the primary breast cancer cell lines with HER2 overexpression further confirmed that 5a significantly inhibited Akt Ser473 and Bad Ser136 phosphorylation and reduced cyclin D3 expression. On the basis of our findings, further development of this 2-aryl benzimidazole derivative, a new class of multitarget anticancer agents, is warranted and represents a novel strategy for improving breast cancer treatment.


PubMed | Tsinghua University, Hebi Polytechnic, Wenzhou University, Shenzhen Kivita Innovative Drug Discovery Institute and University of Montréal
Type: Journal Article | Journal: Acta pharmacologica Sinica | Year: 2016

Recent evidence shows that localization of mRNAs and their protein products at cellular protrusions plays a decisive function in the metastasis of cancer cells. The aim of this study was to identify the variety of proteins encoded by protrusion-localized mRNAs and their roles in the metastasis and invasion of liver cancer cells.Highly metastatic hepatocellular carcinoma cell line HCCLM3 and non-metastatic hepatocellular carcinoma cell line SMMC-7721 were examined. Cell protrusions (Ps) were separated from cell bodies (CB) using a Boyden chamber assay; total mRNA population in CB and Ps fractions was analyzed using high-throughput direct RNA sequencing. The localization of STAT3 mRNA and protein at Ps was confirmed using RT-qPCR, RNA FISH, and immunofluorescence assays. Cell migration capacity and invasiveness of HCCLM3 cells were evaluated using MTT, wound healing migration and in vitro invasion assays. The interaction between Stat3 and growth factor receptors was explored with co-immunoprecipitation assays.In HCCLM3 cells, 793 mRNAs were identified as being localized in the Ps fraction according to a cut-off value (Ps/CB ratio) >1.6. The Ps-localized mRNAs could be divided into 4 functional groups, and were all closely related to the invasive and metastatic properties. STAT3 mRNA accumulated in the Ps of HCCLM3 cells compared with non-metastatic SMMC-7721 cells. Treatment of HCCLM3 cells with siRNAs against STAT3 mRNA drastically decreased the cell migration and invasion. Moreover, Ps-localized Stat3 was found to interact with pseudopod-enriched platelet-derived growth factor receptor tyrosine kinase (PDGFRTK) in a growth factor-dependent manner.This study reveals STAT3 mRNA localization at the Ps of metastatic hepatocellular carcinoma HCCLM3 cells by combining application of genome-wide and gene specific description and functional analysis.


PubMed | Tsinghua University and Shenzhen Kivita Innovative Drug Discovery Institute
Type: Journal Article | Journal: The Analyst | Year: 2016

A sensor array consisting of six cationic fluorescent conjugated polyelectrolytes (CPEs) is reported, which could readily differentiate between nine closely related hydrophilic nitroaromatics (NACs) in separate aqueous solutions by fluorescence pattern recognition and linear discrimination analysis (LDA).


PubMed | Tsinghua University and Shenzhen Kivita Innovative Drug Discovery Institute
Type: Journal Article | Journal: Biochemical and biophysical research communications | Year: 2016

Ubiquitination proteasome pathway (UPP) is the most important and selective way to degrade proteins in vivo. Here, a novel proteolysis targeting peptide (PROTAP) strategy, composed of a target protein binding peptide, a linker and a ubiquitin E3 ligase recognition peptide, was designed to recruit both target protein and E3 ligase and then induce polyubiquitination and degradation of the target protein through UPP. In our study, the PROTAP strategy was proved to be a general method with high specificity using Bcl-xL protein as model target in vitro and in cells, which indicates that the strategy has great potential for in vivo application.


PubMed | Tsinghua University and Shenzhen Kivita Innovative Drug Discovery Institute
Type: Journal Article | Journal: Acta pharmacologica Sinica | Year: 2015

To investigate the mechanisms underlying anticancer action of the benzimidazole acridine derivative N-{(1H-benzo[d]imidazol-2-yl)methyl}-2-butylacridin-9-amine(8m) against human colon cancer cells in vitro.Human colon cancer cell lines SW480 and HCT116 were incubated in the presence of 8m, and then the cell proliferation and apoptosis were measured. The expression of apoptotic/signaling genes and proteins was detected using RT-PCR and Western blotting. ROS generation and mitochondrial membrane depolarization were visualized with fluorescence microscopy.8m dose-dependently suppressed the proliferation of SW480 and HCT116 cells with IC50 values of 6.77 and 3.33 mol/L, respectively. 8m induced apoptosis of HCT116 cells, accompanied by down-regulation of Bcl-2, up-regulation of death receptor-5 (DR5), truncation of Bid, cleavage of PARP, and activation of caspases (including caspase-8 and caspase-9 as well as the downstream caspases-3 and caspase-7). Moreover, 8m selectively activated JNK and p38 without affecting ERK in HCT116 cells. Knockout of JNK1, but not p38, attenuated 8m-induced apoptosis. In addition, 8m induced ROS production and mitochondrial membrane depolarization in HCT116 cells. Pretreatment with the antioxidants N-acetyl cysteine or glutathione attenuated 8m-induced apoptosis and JNK activation in HCT116 cells.The new benzimidazole acridine derivative, 8m exerts anticancer activity against human colon cancer cells in vitro by inducing both intrinsic and extrinsic apoptosis pathways via the ROS-JNK1 pathway.


PubMed | Tsinghua University and Shenzhen Kivita Innovative Drug Discovery Institute
Type: | Journal: Cell death & disease | Year: 2015

Aberrant expression or function of epidermal growth factor receptor (EGFR) or the closely related human epidermal growth factor receptor 2 (HER2) can promote cell proliferation and survival, thereby contributing to tumorigenesis. Specific antibodies and low-molecular-weight tyrosine kinase inhibitors of both proteins are currently in clinical trials for cancer treatment. Benzimidazole derivatives possess diverse biological activities, including antitumor activity. However, the anticancer mechanism of 5a (a 2-aryl benzimidazole compound; 2-chloro-N-(2-p-tolyl-1H-benzo[d]imidazol-5-yl)acetamide, C(16)H(14)ClN(3)O, MW299), a novel 2-aryl benzimidazole derivative, toward breast cancer is largely unknown. Here, we demonstrate that 5a potently inhibited both EGFR and HER2 activity by reducing EGFR and HER2 tyrosine phosphorylation and preventing downstream activation of PI3K/Akt and MEK/Erk pathways in vitro and in vivo. We also show that 5a inhibited the phosphorylation of FOXO and promoted FOXO translocation from the cytoplasm into the nucleus, resulting in the G1-phase cell cycle arrest and apoptosis. Moreover, 5a potently induced apoptosis via the c-Jun N-terminal kinase (JNK)-mediated death receptor 5 upregulation in breast cancer cells. The antitumor activity of 5a was consistent with additional results demonstrating that 5a significantly reduced tumor volume in nude mice in vivo. Analysis of the primary breast cancer cell lines with HER2 overexpression further confirmed that 5a significantly inhibited Akt Ser473 and Bad Ser136 phosphorylation and reduced cyclin D3 expression. On the basis of our findings, further development of this 2-aryl benzimidazole derivative, a new class of multitarget anticancer agents, is warranted and represents a novel strategy for improving breast cancer treatment.

Loading Shenzhen Kivita Innovative Drug Discovery Institute collaborators
Loading Shenzhen Kivita Innovative Drug Discovery Institute collaborators