Sheffield, United Kingdom
Sheffield, United Kingdom

Time filter

Source Type

Swift A.J.,University of Sheffield | Saunders L.C.,University of Sheffield | Sproson T.,University of Sheffield | Hussain N.,Sheffield Pulmonary Vascular Disease Unit | And 5 more authors.
Current Cardiovascular Imaging Reports | Year: 2015

Quantitative magnetic resonance imaging provides a comprehensive and non-invasive assessment of the heart and lungs in patients with suspected pulmonary hypertension with the potential for accurate assessment of disease severity and response to treatment. Magnetic resonance imaging (MRI) can provide detailed reliable information of heart structure and function as the heart responds to elevated right ventricle afterload in patients with progressive pulmonary vascular disease; notably, progressive changes in right ventricle volume and function are of prognostic value independent of established biomarkers. This article reviews the current literature on MRI in pulmonary hypertension and also describes new and exciting developments in imaging of the heart, pulmonary vasculature and lungs, including assessment of myocardial changes with late gadolinium-enhanced imaging and T1 mapping, evaluating changes in the proximal pulmonary vasculature using image-based computational modelling and quantitative assessment of the capillary bed using MRI perfusion analysis. © 2015, Springer Science+Business Media New York.


PubMed | Sheffield Pulmonary Vascular Disease Unit
Type: | Journal: F1000prime reports | Year: 2015

Although rare in its idiopathic form, pulmonary arterial hypertension (PAH) is not uncommon in association with various associated medical conditions, most notably connective tissue disease (CTD). In particular, it develops in approximately 10% of patients with systemic sclerosis and so these patients are increasingly screened to enable early detection. The response of patients with systemic sclerosis to PAH-specific therapy appears to be worse than in other forms of PAH. Survival in systemic sclerosis-associated PAH is inferior to that observed in idiopathic PAH. Potential reasons for this include differences in age, the nature of the underlying pulmonary vasculopathy and the ability of the right ventricle to cope with increased afterload between patients with systemic sclerosis-associated PAH and idiopathic PAH, while coexisting cardiac and pulmonary disease is common in systemic sclerosis-associated PAH. Other forms of connective tissue-associated PAH have been less well studied, however PAH associated with systemic lupus erythematosus (SLE) has a better prognosis than systemic sclerosis-associated PAH and likely responds to immunosuppression.

Loading Sheffield Pulmonary Vascular Disease Unit collaborators
Loading Sheffield Pulmonary Vascular Disease Unit collaborators