Time filter

Source Type

Minneapolis, MN, United States

Hanus J.,Charles University | Broz M.,Charles University | Durech J.,Charles University | Warner B.D.,Palmer Divide Observatory | And 8 more authors.
Astronomy and Astrophysics

Context. The current number of ∼500 asteroid models derived from the disk-integrated photometry by the lightcurve inversion method allows us to study the spin-vector properties of not only the whole population of main-belt asteroids, but also of several individual collisional families. Aims. We create a data set of 152 asteroids that were identified by the hierarchical clustering method (HCM) as members of ten collisional families, among which are 31 newly derived unique models and 24 new models with well-constrained pole-ecliptic latitudes of the spin axes. The remaining models are adopted from the DAMIT database or a few individual publications. Methods. We revised the preliminary family membership identification by the HCM according to several additional criteria: taxonomic type, color, albedo, maximum Yarkovsky semi-major axis drift, and the consistency with the size-frequency distribution of each family, and consequently we remove interlopers. We then present the spin-vector distributions for asteroidal families Flora, Koronis, Eos, Eunomia, Phocaea, Themis, Maria, and Alauda. We use a combined orbital-and spin-evolution model to explain the observed spin-vector properties of objects among collisional families. Results. In general, for studied families we observe similar trends in (ap, β) space (proper semi-major axis vs. ecliptic latitude of the spin axis): (i) larger asteroids are situated in the proximity of the center of the family; (ii) asteroids with β > 0 are usually found to the right of the family center; (iii) on the other hand, asteroids with β < 0 to the left of the center; (iv) the majority of asteroids have large pole-ecliptic latitudes (|β| â‰30); and finally (v) some families have a statistically significant excess of asteroids with β > 0 or β < 0. Our numerical simulation of the long-term evolution of a collisional family is capable of reproducing the observed spin-vector properties well. Using this simulation, we also independently constrain the age of families Flora (1.0 ± 0.5 Gyr) and Koronis (2.5-4 Gyr). © 2013 ESO. Source

Chiorny V.,University of Kharkiv | Galad A.,Modra Observatory | Galad A.,Academy of Sciences of the Czech Republic | Pravec P.,Academy of Sciences of the Czech Republic | And 16 more authors.
Planetary and Space Science

We present the results of absolute photometry the absolute brightness HV, the effective diameter, (B)VR color indices, composite light curves, period of rotation and amplitude of variations of several small asteroids in the inner main-belt: 1344 Caubeta, 1401 Lavonne, 2947 Kippenhahn, 3913 Chemin, 3956 Caspar, 4375 Kiyomori, 4555 1987 QL, 5484 Inoda, 5985 1942 RJ, 6949 Zissell and main-belt asteroid 6867 Kuwano. The photometric observations of these objects were made in the period 20072009 as part of a project of photometric studies of small main-belt asteroids that involves a collaboration of a number of asteroid photometrists around the world. © 2011 Elsevier Ltd. All rights reserved. Source

Pravec P.,Academy of Sciences of the Czech Republic | Scheirich P.,Academy of Sciences of the Czech Republic | Vokrouhlicky D.,Charles University | Harris A.W.,4603 Orange Knoll Avenue | And 42 more authors.

Our photometric observations of 18 main-belt binary systems in more than one apparition revealed a strikingly high number of 15 having positively re-observed mutual events in the return apparitions. Our simulations of the survey showed that it cannot be due to an observational selection effect and that the data strongly suggest that poles of mutual orbits between components of binary asteroids in the primary size range 3-8. km are not distributed randomly: The null hypothesis of an isotropic distribution of the orbit poles is rejected at a confidence level greater than 99.99%. Binary orbit poles concentrate at high ecliptic latitudes, within 30° of the poles of the ecliptic. We propose that the binary orbit poles oriented preferentially up/down-right are due to either of the two processes: (i) the YORP tilt of spin axes of their parent bodies toward the asymptotic states near obliquities 0° and 180° (pre-formation mechanism) or (ii) the YORP tilt of spin axes of the primary components of already formed binary systems toward the asymptotic states near obliquities 0° and 180° (post-formation mechanism). The alternative process of elimination of binaries with poles closer to the ecliptic by dynamical instability, such as the Kozai effect due to gravitational perturbations from the Sun, does not explain the observed orbit pole concentration. This is because for close binary asteroid systems, the gravitational effects of primary's irregular shape dominate the solar-tide effect. © 2011 Elsevier Inc. Source

Pravec P.,Academy of Sciences of the Czech Republic | Scheirich P.,Academy of Sciences of the Czech Republic | Kusnirak P.,Academy of Sciences of the Czech Republic | Hornoch K.,Academy of Sciences of the Czech Republic | And 46 more authors.

We collected data on rotations and elongations of 46 secondaries of binary and triple systems among near-Earth, Mars-crossing and small main belt asteroids. 24 were found or are strongly suspected to be synchronous (in 1:1 spin-orbit resonance), and the other 22, generally on more distant and/or eccentric orbits, were found or are suggested to have asynchronous rotations. For 18 of the synchronous secondaries, we constrained their librational angles, finding that their long axes pointed to within 20° of the primary on most epochs. The observed anti-correlation of secondary synchroneity with orbital eccentricity and the limited librational angles agree with the theories by Ćuk and Nesvorný (Ćuk, M., Nesvorný, D. [2010]. Icarus 207, 732-743) and Naidu and Margot (Naidu, S.P., Margot, J.-L. [2015]. Astron. J. 149, 80). A reason for the asynchronous secondaries being on wider orbits than synchronous ones may be longer tidal circularization time scales at larger semi-major axes. The asynchronous secondaries show relatively fast spins; their rotation periods are typically <10 h. An intriguing observation is a paucity of chaotic secondary rotations; with an exception of (35107) 1991 VH, the secondary rotations are single-periodic with no signs of chaotic rotation and their periods are constant on timescales from weeks to years. The secondary equatorial elongations show an upper limit of a2/b2~1.5. The lack of synchronous secondaries with greater elongations appears consistent, considering uncertainties of the axis ratio estimates, with the theory by Ćuk and Nesvorný that predicts large regions of chaotic rotation in the phase space for a2/b2≳2. Alternatively, secondaries may not form or stay very elongated in gravitational (tidal) field of the primary. It could be due to the secondary fission mechanism suggested by Jacobson and Scheeres (Jacobson, S.A., Scheeres, D.J. [2011]. Icarus 214, 161-178), as its efficiency is correlated with the secondary elongation. Sharma (Sharma, I. [2014]. Icarus 229, 278-294) found that rubble-pile satellites with a2/b2≲1.5 are more stable to finite structural perturbations than more elongated ones. It appears that more elongated secondaries, if they originally formed in spin fission of parent asteroid, are less likely to survive intact and they more frequently fail or fission. © 2015 Elsevier Inc. Source

Hanus J.,Charles University | Durech J.,Charles University | Broz M.,Charles University | Marciniak A.,Adam Mickiewicz University | And 70 more authors.
Astronomy and Astrophysics

Context. The larger number of models of asteroid shapes and their rotational states derived by the lightcurve inversion give us better insight into both the nature of individual objects and the whole asteroid population. With a larger statistical sample we can study the physical properties of asteroid populations, such as main-belt asteroids or individual asteroid families, in more detail. Shape models can also be used in combination with other types of observational data (IR, adaptive optics images, stellar occultations), e.g., to determine sizes and thermal properties. Aims. We use all available photometric data of asteroids to derive their physical models by the lightcurve inversion method and compare the observed pole latitude distributions of all asteroids with known convex shape models with the simulated pole latitude distributions. Methods. We used classical dense photometric lightcurves from several sources (Uppsala Asteroid Photometric Catalogue, Palomar Transient Factory survey, and from individual observers) and sparse-in-time photometry from the U.S. Naval Observatory in Flagstaff, Catalina Sky Survey, and La Palma surveys (IAU codes 689, 703, 950) in the lightcurve inversion method to determine asteroid convex models and their rotational states. We also extended a simple dynamical model for the spin evolution of asteroids used in our previous paper. Results. We present 119 new asteroid models derived from combined dense and sparse-in-time photometry. We discuss the reliability of asteroid shape models derived only from Catalina Sky Survey data (IAU code 703) and present 20 such models. By using different values for a scaling parameter cYORP (corresponds to the magnitude of the YORP momentum) in the dynamical model for the spin evolution and by comparing synthetic and observed pole-latitude distributions, we were able to constrain the typical values of the c YORP parameter as between 0.05 and 0.6. © 2013 ESO. Source

Discover hidden collaborations