Time filter

Source Type

Wang S.,China Pharmaceutical University | Wang S.,Shanghai Key Laboratory for Pharmaceutical Metabolite Research | Wang S.,Shanghai Research Center for Drug Metabolism | Wang S.,Xuhui Central Hospital of Shanghai | And 14 more authors.
Analytica Chimica Acta | Year: 2012

A comprehensive two-dimensional (2D) separation is one that employs two separation dimensions (columns) and draws on all of the available resolving power from each of the dimensions of separate the components in a sample. In this study, a comprehensive 2D chromatography approach was developed for the separation and identification of membrane permeable compounds in a famous traditional Chinese medicine of Schisandra chinensis. The first dimensional column was the immobilized liposome chromatography (ILC) column, which mimics the biological membranes and can be used to study drug-membrane interactions in liquid chromatography. Using an automatic ten-port switching valve equipped with two sample loops, the section of the first-dimension was introduced in the second-dimension consist of a silica monolithic column. More than 40 components in Schisandra chinensis were resolved by using the developed separation system and among them 14 compounds were identified interacting with the ILC column based on their retention action, UV and mass data. With this comprehensive 2D-HPLC system, the three-dimensional chromatographic fingerprints of Schisandra chinensis were preliminarily established and processed by using principal component analysis and hierarchical clustering analysis. The obtained information can distinguish the unacceptable samples of the quality control. The result demonstrated that the 2D biochromatography system has been demonstrated to have more advantages of finding strong binding bioactive components, providing an enhanced peak capacity, good sensitivity and powerful resolution biological fingerprinting analysis of complex TCMs, which was a useful means to control the quality of and to clarify the membrane permeability of the compounds in Schisandra chinensis. © 2011 Elsevier B.V.

Loading Shanghai Research Center for Drug Metabolism collaborators
Loading Shanghai Research Center for Drug Metabolism collaborators