Zhoupu Hospital of Shanghai Pudong New Area

Shanghai, China

Zhoupu Hospital of Shanghai Pudong New Area

Shanghai, China

Time filter

Source Type

Cheng M.,Zhoupu Hospital of Shanghai Pudong New Area | Cheng M.,Fudan University | Liu Z.,Shaoxing University | Wan T.,Wuhan University of Technology | And 9 more authors.
Cancer Biology and Therapy | Year: 2012

Biodegradable polymer nanoparticle drug delivery systems are characterized by targeted drug delivery, improved pharmacokinetic and biodistribution, enhanced drug stability and lowered side effects; these drug delivery systems are widely used for delivery of cytotoxic agents. The galactosylated chitosan (GC)/5-fluorouracil (5-FU) nanoparticle is a nanomaterial made by coupling GC, a polymer known to have the advantages described above, and 5-FU. The GC/5-FU nanoparticle is a sustained release system, it was showed that the peak time, half-life time, mean residence time (MRT) and area of under curve (AUC) of GC/5-FU were longer or more than those of the 5-FU group, but the maximum concentration (Cmax) was lower. The distribution of GC/5-FU in vivo revealed the greatest accumulation in the hepatic cancer tissues, and the hepatic cell was the target of the nanoparticles. Toxicology research showed that the toxicity of GC-5-FU was lower than that of 5-FU in mice. In vivo experiments showed that GC/5-FU can significantly inhibit tumor growth in an orthotropic liver cancer mouse model. GC/5-FU treatment can significantly lower the tumor weight and increase the survival time of mice when compared with 5-FU treatment alone. Flow cytometry and the TUNEL assay revealed that compared with 5-FU, GC/5-FU caused higher rates of G0-G1 arrest and apoptosis in hepatic cancer cells. © 2012 Landes Bioscience.


Cheng M.,Zhoupu Hospital of Shanghai Pudong New Area | Cheng M.,Fudan University | He B.,Fudan University | Wan T.,Wuhan University of Technology | And 9 more authors.
PLoS ONE | Year: 2012

Biodegradable polymer nanoparticle drug delivery systems provide targeted drug delivery, improved pharmacokinetic and biodistribution, enhanced drug stability and fewer side effects. These drug delivery systems are widely used for delivering cytotoxic agents. In the present study, we synthesized GC/5-FU nanoparticles by combining galactosylated chitosan (GC) material with 5-FU, and tested its effect on liver cancer in vitro and in vivo. The in vitro anti-cancer effects of this sustained release system were both dose- and time-dependent, and demonstrated higher cytotoxicity against hepatic cancer cells than against other cell types. The distribution of GC/5-FU in vivo revealed the greatest accumulation in hepatic cancer tissues. GC/5-FU significantly inhibited tumor growth in an orthotropic liver cancer mouse model, resulting in a significant reduction in tumor weight and increased survival time in comparison to 5-FU alone. Flow cytometry and TUNEL assays in hepatic cancer cells showed that GC/5-FU was associated with higher rates of G0-G1 arrest and apoptosis than 5-FU. Analysis of apoptosis pathways indicated that GC/5-FU upregulates p53 expression at both protein and mRNA levels. This in turn lowers Bcl-2/Bax expression resulting in mitochondrial release of cytochrome C into the cytosol with subsequent caspase-3 activation. Upregulation of caspase-3 expression decreased poly ADP-ribose polymerase 1 (PARP-1) at mRNA and protein levels, further promoting apoptosis. These findings indicate that sustained release of GC/5-FU nanoparticles are more effective at targeting hepatic cancer cells than 5-FU monotherapy in the mouse orthotropic liver cancer mouse model. © 2012 Cheng et al.


Cheng M.,Zhoupu Hospital of Shanghai Pudong New Area | Cheng M.,Fudan University | Han J.,Zhoupu Hospital of Shanghai Pudong New Area | Li Q.,Pujiang Hospital of Shanghai Fifth Peoples Hospital | And 8 more authors.
Journal of Biomedical Materials Research - Part B Applied Biomaterials | Year: 2012

Biodegradable polymer nanoparticle drug delivery systems are characterized by targeted drug delivery, improved pharmacokinetic and biodistribution, enhanced drug stability, and lowered side effects; these drug delivery systems are widely used for delivery of cytotoxic agents. The galactosylated chitosan (GC)/5-fluorouracil (5-FU) nanoparticle is a nanomaterial made by coupling GC, a polymer known to have the advantages described above, and 5-FU. We found that when 5-FU and GC were mixed at the mass ratio of 10:1, the nanoparticle reached a maximum encapsulation efficiency of 81.82% ± 5.32%, with a drug loading of 6.12% ± 1.36%, a particle size of 35.19 ± 9.50 nm, and a Zeta potential of +10.34 ± 1.43 mV. The GC/5-FU nanoparticle is a sustained release system, whose anticancer effects were shown to be dose and time dependent, with a higher cytotoxicity to hepatic cancer than to other cell types. The distribution of GC/5-FU in vivo revealed the greatest accumulation in the hepatic cancer tissues, with an 8.69-, 23.35-, 79.96-, and 85.15-fold increase when compared to normal liver tissue, kidney, heart and blood, respectively, suggesting that the hepatic cell was the target of the nanoparticles. In vivo experiments showed that GC/5-FU can significantly inhibit tumor growth in an orthotropic liver cancer mouse model. GC/5-FU treatment can significantly lower the tumor weight and increase the survival time of mice when compared to 5-FU treatment alone. Flow cytometry revealed that compared to 5-FU, GC/5-FU caused higher rates of G0-G1 arrest and apoptosis in hepatic cancer cells. © 2012 Wiley Periodicals, Inc.


Ni A.-P.,Zhoupu Hospital of Shanghai Pudong New Area | Jiang L.-H.,Shidong Hospital of Shanghai Yangpu District | Zhou D.,Zhoupu Hospital of Shanghai Pudong New Area
International Eye Science | Year: 2012

AIM: To study the effect of pterygium excision under microscope combined with free autologous bulbar conjunctiva flap transplantation. METHODS: Totally 93 cases (97 eyes) of pterygium underwent pterygium excision combined with free inferior autologous bulbar conjunctiva graft surgery. The postoperative recovery was observed. RESULTS: Patients were followed up for 6 to 18 months. There were 3 eyes of recurrences (3%), 1 eye of concurrent inflammatory polyp (1%), and no other complications. CONCLUSION: Pterygium excision under microscope combined with autologous free bulbar conjunctiva graft for pterygium surgery is an effective method, with the advantages of lower recurrence rate and without affecting cataract and glaucoma surgical incision.


Cheng M.,Zhoupu Hospital of Shanghai Pudong New Area
Journal of biomedical materials research. Part B, Applied biomaterials | Year: 2012

Biodegradable polymer nanoparticle drug delivery systems are characterized by targeted drug delivery, improved pharmacokinetic and biodistribution, enhanced drug stability, and lowered side effects; these drug delivery systems are widely used for delivery of cytotoxic agents. The galactosylated chitosan (GC)/5-fluorouracil (5-FU) nanoparticle is a nanomaterial made by coupling GC, a polymer known to have the advantages described above, and 5-FU. We found that when 5-FU and GC were mixed at the mass ratio of 10:1, the nanoparticle reached a maximum encapsulation efficiency of 81.82% ± 5.32%, with a drug loading of 6.12% ± 1.36%, a particle size of 35.19 ± 9.50 nm, and a Zeta potential of +10.34 ± 1.43 mV. The GC/5-FU nanoparticle is a sustained release system, whose anticancer effects were shown to be dose and time dependent, with a higher cytotoxicity to hepatic cancer than to other cell types. The distribution of GC/5-FU in vivo revealed the greatest accumulation in the hepatic cancer tissues, with an 8.69-, 23.35-, 79.96-, and 85.15-fold increase when compared to normal liver tissue, kidney, heart and blood, respectively, suggesting that the hepatic cell was the target of the nanoparticles. In vivo experiments showed that GC/5-FU can significantly inhibit tumor growth in an orthotropic liver cancer mouse model. GC/5-FU treatment can significantly lower the tumor weight and increase the survival time of mice when compared to 5-FU treatment alone. Flow cytometry revealed that compared to 5-FU, GC/5-FU caused higher rates of G0-G1 arrest and apoptosis in hepatic cancer cells. Copyright © 2012 Wiley Periodicals, Inc.


PubMed | Zhoupu Hospital of Shanghai Pudong New Area
Type: Journal Article | Journal: PloS one | Year: 2012

Biodegradable polymer nanoparticle drug delivery systems provide targeted drug delivery, improved pharmacokinetic and biodistribution, enhanced drug stability and fewer side effects. These drug delivery systems are widely used for delivering cytotoxic agents. In the present study, we synthesized GC/5-FU nanoparticles by combining galactosylated chitosan (GC) material with 5-FU, and tested its effect on liver cancer in vitro and in vivo. The in vitro anti-cancer effects of this sustained release system were both dose- and time-dependent, and demonstrated higher cytotoxicity against hepatic cancer cells than against other cell types. The distribution of GC/5-FU in vivo revealed the greatest accumulation in hepatic cancer tissues. GC/5-FU significantly inhibited tumor growth in an orthotropic liver cancer mouse model, resulting in a significant reduction in tumor weight and increased survival time in comparison to 5-FU alone. Flow cytometry and TUNEL assays in hepatic cancer cells showed that GC/5-FU was associated with higher rates of G0-G1 arrest and apoptosis than 5-FU. Analysis of apoptosis pathways indicated that GC/5-FU upregulates p53 expression at both protein and mRNA levels. This in turn lowers Bcl-2/Bax expression resulting in mitochondrial release of cytochrome C into the cytosol with subsequent caspase-3 activation. Upregulation of caspase-3 expression decreased poly ADP-ribose polymerase 1 (PARP-1) at mRNA and protein levels, further promoting apoptosis. These findings indicate that sustained release of GC/5-FU nanoparticles are more effective at targeting hepatic cancer cells than 5-FU monotherapy in the mouse orthotropic liver cancer mouse model.


PubMed | Zhoupu Hospital of Shanghai Pudong New Area
Type: Journal Article | Journal: Cancer biology & therapy | Year: 2013

Biodegradable polymer nanoparticle drug delivery systems are characterized by targeted drug delivery, improved pharmacokinetic and biodistribution, enhanced drug stability and lowered side effects; these drug delivery systems are widely used for delivery of cytotoxic agents. The galactosylated chitosan (GC)/5-fluorouracil (5-FU) nanoparticle is a nanomaterial made by coupling GC, a polymer known to have the advantages described above, and 5-FU. The GC/5-FU nanoparticle is a sustained release system, it was showed that the peak time, half-life time, mean residence time (MRT) and area of under curve (AUC) of GC/5-FU were longer or more than those of the 5-FU group, but the maximum concentration (Cmax) was lower. The distribution of GC/5-FU in vivo revealed the greatest accumulation in the hepatic cancer tissues, and the hepatic cell was the target of the nanoparticles. Toxicology research showed that the toxicity of GC-5-FU was lower than that of 5-FU in mice. In vivo experiments showed that GC/5-FU can significantly inhibit tumor growth in an orthotropic liver cancer mouse model. GC/5-FU treatment can significantly lower the tumor weight and increase the survival time of mice when compared with 5-FU treatment alone. Flow cytometry and the TUNEL assay revealed that compared with 5-FU, GC/5-FU caused higher rates of G 0-G 1 arrest and apoptosis in hepatic cancer cells.

Loading Zhoupu Hospital of Shanghai Pudong New Area collaborators
Loading Zhoupu Hospital of Shanghai Pudong New Area collaborators