Shanghai, China
Shanghai, China

Shanghai Normal University is a public university in Shanghai, China. As a key university in Shanghai city, it is a comprehensive local university with salient features of teacher training and particular strength in liberal arts. The main undertakings of the university are undergraduate education with the chief aim of producing high level application-oriented talents. Wikipedia.

Time filter

Source Type

Shi Y.,Hangzhou Normal University | Wan Y.,Shanghai Normal University | Zhao D.,Fudan University
Chemical Society Reviews | Year: 2011

Ordered mesoporous inorganic non-oxide materials attract increasing interest due to their plenty of unique properties and functionalities and potential applications. Lots of achievements have been made on their synthesis and structural characterization, especially in the last five years. In this critical review, the ordered mesoporous non-oxide materials are categorized by compositions, including non-oxide ceramics, metal chalcogenides, metal nitrides, carbides and fluorides, and systematically summarized on the basis of their synthesis approaches and mechanisms, as well as properties. Two synthesis routes such as hardlating (nanocasting) and softlating (surfactant assembly) routes are demonstrated. The principal issues in the nanocasting synthesis including the template composition and mesostructure, pore surface chemistry, precursor selection, processing and template removal are emphatically described. A great number of successful cases from the softlating method are focused on the surfactant liquid-crystal mesophases to synthesize mesostructured metal chalcogenide composites and the inorganic-block-organic copolymer self-assembly to obtain non-oxide ceramics (296 references). © 2011 The Royal Society of Chemistry.

Xiao J.,Shanghai Normal University | Kai G.,Shanghai Normal University
Critical Reviews in Food Science and Nutrition | Year: 2012

The interactions between polyphenols, especially flavonoids and plasma proteins, have attracted great interest among researchers. Few papers, however, have focused on the structure-affinity relationship of polyphenols on their affinities for plasma proteins. The aim of this review is to give an overview of the research reports on the characterization, influence on the bioactivity, and the structure-affinity relationship for studying the affinities between polyphenols and plasma proteins. The molecular properties that influence the affinities of polyphenols for plasma proteins are the following: 1) One or more hydroxyl groups in the B-ring (e.g., 3',4' dihydroxylated B ring catechol group) of flavonoids enhanced the binding affinities to proteins. However, the hydroxyl group in the C-ring will weaken the binding interaction. 2) The presence of an unsaturated 2,3-bond in conjugation with a 4-carbonyl group, characteristic of flavonols structure, has been associated with stronger binding affinity with plasma proteins; 3) The glycosylation of flavonoids decreases the affinities for plasma proteins by 1-3 orders of magnitude depending on the conjugation site and the class of sugar moiety; 4) The methylation of hydroxyl groups in flavonoids slightly enhanced the affinities for plasma proteins by 2-16 times; 5) The galloylated catechins have higher binding affinities for plasma proteins than do non-galloylated catechins and the pyrogallol-type catechins have higher affinities than do the catechol-type catechins. The affinity of the catechin with 2,3-trans structure was lower than those of the catechin with 2,3-cis structure; 6) The gallotannins with more gallol groups presented a much higher percentage of binding to plasma proteins. α-D-Gallotannin showed a greater affinity for plasma proteins than does the natural stereoisomer, β-D-gallotannin; 7) The binding degree of chlorogenic acid with only one caffeoyl group was lower than the binding degrees of caffeoyl quinic acids with more caffeoyl groups. The methylation of phenolic acid decreased the affinity for BSA. © Taylor and Francis Group, LLC.

Han M.,Shanghai Normal University
International Journal of Bifurcation and Chaos | Year: 2012

In the study of the perturbation of Hamiltonian systems, the first order Melnikov functions play an important role. By finding its zeros, we can find limit cycles. By analyzing its analytical property, we can find its zeros. The main purpose of this article is to summarize some methods to find its zeros near a Hamiltonian value corresponding to an elementary center, nilpotent center or a homoclinic or heteroclinic loop with hyperbolic saddles or nilpotent critical points through the asymptotic expansions of the Melnikov function at these values. We present a series of results on the limit cycle bifurcation by using the first coefficients of the asymptotic expansions. © 2012 World Scientific Publishing Company.

He X.,Shanghai Normal University | Zhao Z.-Y.,Shanghai Normal University | Shi W.,Shanghai Normal University
Optics Letters | Year: 2015

By integrating the metallic metamaterials (MMs) with a graphene layer, the resonant properties of an active tunable device based on the metal-SiO2-graphene (MSiO2G) structure have been theoretically investigated in the near-IR spectral region. The results manifest that the influences of the graphene layer on the propagation properties are significant. Owing to the tunability of the Fermi level of graphene, the resonance of transmitted or reflected curves can be tuned in a wide range (160-193 THz). To an original metal unit cell structure, an elevated Fermi level of graphene layer enhances the resonance dips and shifts it to the higher frequency. Compared with the original structure, the corresponding complementary MMs structure shows a much sharper spectral curve and can be used to fabricate a switcher or filters. The results are very helpful for designing graphene plasmonic devices. © 2015 Optical Society of America.

Zhu F.-X.,Shanghai Normal University | Wang W.,University of New Mexico | Li H.-X.,Shanghai Normal University
Journal of the American Chemical Society | Year: 2011

An operationally simple approach for the preparation of a new class of bifunctional Au nanoparticle-acid catalysts has been developed. In situ reduction of Au 3+ with HS-functionalized periodic mesoporous organosilicas (PMOs) creates robust, fine Au nanoparticles and concomitantly produces a sulfonic acid moiety strongly bonded to PMOs. Characterizations of the nanostructures reveal that Au nanoparticles are formed with uniformed, narrow size distribution around 1-2 nm, which is very critical for essential catalytic activities. Moreover, the Au nanoparticles are mainly attached onto the pore surface rather than onto the outer surface with ordered mesoporous channels, allowing for maximal exposure to reaction substrates while minimizing Au nanoparticle leaching. Their higher S BET, V P, and D P than either the Au-HS-PMO(Et) or the Au/SO 3H-PMO(Et) render the catalyst with comparably even higher catalytic efficiency than its homogeneous counterparts. Furthermore, the unique amphiphilic compartment of the Au-HS/SO 3H-PMO(Et) nanostructures enables organic reactions to proceed efficiently in a pure aqueous solution without using any organic solvents or even without water. As demonstrated experimentally, remarkably, the unique bifunctional Au-HS/SO 3H-PMO(Et) catalyst displays higher efficiencies in promoting water-medium alkyne hydration, intramolecular hydroamination, styrene oxidation, and three-component coupling reactions and even the solvent-free alkyne hydration process than its homogeneous catalysts. The robust catalyst can be easily recycled and used repetitively at least 10 times without loss of catalytic efficiency. These features render the catalyst particularly attractive in the practice of organic synthesis in an environmentally friendly manner. © 2011 American Chemical Society.

Zhao B.,Shanghai Normal University | Han Z.,CAS Shanghai Institute of Organic Chemistry | Ding K.,CAS Shanghai Institute of Organic Chemistry
Angewandte Chemie - International Edition | Year: 2013

The organometallic approach is one of the most active topics in catalysis. The application of NH functionality in organometallic catalysis has become an important and attractive concept in catalyst design. NH moieties in the modifiers of organometallic catalysts have been shown to have various beneficial functions in catalysis by molecular recognition through hydrogen bonding to give catalyst-substrate, ligand-ligand, ligand-catalyst, and catalyst-catalyst interactions. This Review summarizes recent progress in the development of the organometallic catalysts based on the concept of cooperative catalysis by focusing on the NH moiety. The "magic" effects of N-H moieties in organometallic catalysis have been observed in various reaction systems. Recent advances are presented in the development of organometallic catalysts based on the concept of cooperative catalysis by taking the beneficial effect of the NH moiety in the catalyst by catalyst-substrate, ligand-ligand, and catalyst-catalyst interactions. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Liu D.-J.,Shanghai Normal University
Physical Review D - Particles, Fields, Gravitation and Cosmology | Year: 2010

In this paper, the cosmological dynamics of Brans-Dicke (BD) theory in which there are fermions with a coupling to BD scalar field as well as a self-interaction potential is investigated. The conditions that there exists a solution which is stable and represents a late-time accelerated expansion of the Universe are found. The variable mass of fermions cannot vanish exactly during the evolution of the Universe once it exists initially. It is shown that the late-time acceleration depends completely on the self-interaction of the fermion field if our investigation is restricted to the theory with positive BD parameter ω. Provided a negative ω is allowed, there will be another two classes of stable solutions describing the late-time accelerated expansion of the Universe. © 2010 The American Physical Society.

He X.,Shanghai Normal University
Carbon | Year: 2015

Using graphene metamaterial (MM) patterns, the tunable resonant properties of graphene- SiO2/Si (GSiO2Si) structures deposited on flexible polymer substrates have been theoretically investigated in the terahertz regime. This study shows that the tuning mechanism of the GSiO2Si structure mainly depends on dipolar resonance, which is different from the conventional metallic MM structure based on the LC resonance. For graphene MM structures, the resonant transmission curves can be tuned over a wide range by controlling applied electric fields. The modulation depth of transmission is about 80%. As the Fermi level of the graphene layer increases, the resonant transmission become stronger, and the resonant dips significantly shift to higher frequency.

Li Y.,Shanghai Normal University
Zeitschrift fur Angewandte Mathematik und Physik | Year: 2013

In this paper, we present a bipolar hydrodynamic model from semiconductor devices and plasmas, which takes the form of bipolar isentropic Euler-Poisson with electric field and frictional damping added to the momentum equations. We firstly prove the existence of the stationary solutions. Next, we present the global existence and the asymptotic behavior of smooth solutions to the initial boundary value problem for a one-dimensional case in a bounded domain. The result is shown by an elementary energy method. Compared with the corresponding initial data case, we find that the asymptotic state is the stationary solution. © 2012 Springer Basel.

Agency: Cordis | Branch: H2020 | Program: ERC-STG | Phase: ERC-StG-2015 | Award Amount: 1.49M | Year: 2016

Music and language share similar properties and are processed in overlapping brain regions. As a common information-bearing element in music and language, pitch plays an essential role in encoding musical melodies, signifying linguistic functions, and conveying emotions through music and speech. However, two distinct neurodevelopmental disorders, congenital amusia (CA) and autism spectrum disorders (ASD), affecting millions of people in Europe and worldwide, may selectively impair individuals ability to process musical, linguistic, and emotional pitch. To date, it remains unclear why individuals with CA and ASD exhibit significant differences in music, speech, and emotion processing. Under our Delicate Form-Function Balance Hypothesis, we will conduct a series of behavioural and neurophysiological experiments to test the central hypothesis that normal musical, linguistic, and emotional functioning requires a delicate balance in the encoding and decoding of form and function in musical, speech, and emotional communication, with musical communication centred on form and linguistic and emotional communication focused on function. Most critically, we hypothesize that the differences in music, speech, and emotional processing in CA and ASD are rooted not only in pitch and cognitive abilities, but also in the balance between form and function for each domain. Addressing three specific aims regarding the impacts of cognitive processing styles, pitch processing skills, and language background (tone vs. non-tonal) on the behavioural and neurophysiological characteristics of music, language, and emotion processing in CA and ASD, this research will not only help reveal the underlying mechanisms of the two defining aspects of human cognition, music and language, but also form a laboratory for testing key hypotheses about the bio-behavioural manifestations of human neurodevelopmental disorders in music and language processing.

Loading Shanghai Normal University collaborators
Loading Shanghai Normal University collaborators