Shanghai Laboratory Animals Research Center

Shanghai, China

Shanghai Laboratory Animals Research Center

Shanghai, China
SEARCH FILTERS
Time filter
Source Type

Gao J.,Donghua University | Gao J.,Shanghai Academy of Agricultural science | Yue L.-L.,Southwest forestry University | Jiang X.,Donghua University | And 5 more authors.
Pakistan Journal of Zoology | Year: 2017

To examine the phylogeographic relationships of Microtus fortis in China, we investigated 84 individuals collected from five populations. The mitochondrial cytochrome b gene (cyt b) and control region (CR) were sequenced and 49 haplotypes were observed. No shared haplotype was found among different geographic populations. High Fst values among the populations suggested that fragmentation of habitat has resulted in genetically distinct populations. The trees, inferred from maximum likelihood and Bayesian phylogenetic analysis, highly supported all the M. fortis individuals clustering into one monophyletic lineage. Three main clades are recovered within M. fortis: (1) North group; (2) South group; and (3) GX group. The North Group distributed on the north side of Qinling Mountains-Huaihe river line as well as the South Group was on the south. It suggests this geographic barrier played an important role in differentiation of M. fortis in China. Furthermore, the samples all from Southwest China in the GX group may be an example of 'refuge within refugia' in glacial period. According to our molecular clock analysis, the main clades of M. fortis divergence and separated time at around 0.77±0.64 million years ago (Mya) located in the Penultimate Glaciation. Divergences within the three clades taken place during the interglacial period between the Penultimate Glaciation and the Last Glaciation. Bayesian skyline plot indicates the effective population size of M. fortis had been experiencing a downward trend in the past decades, which may due to the habitats loss and environmental degradation. Copyright 2017 Zoological Society of Pakistan.


Jiang X.,Donghua University | Gao J.,Donghua University | Gao J.,Veterinary science Shanghai Academy of Agricultural science | Ni L.,Shanghai Laboratory Animals Research Center | And 8 more authors.
Gene | Year: 2012

Microtus fortis is a special resource of rodent in China. It is a promising experimental animal model for the study on the mechanism of Schistosome japonicum resistance. The first complete mitochondrial genome sequence for Microtus fortis calamorum, a subspecies of M. fortis (Arvicolinae, Rodentia), was reported in this study. The mitochondrial genome sequence of M. f. calamorum (Genbank: JF261175) showed a typical vertebrate pattern with 13 protein coding genes, 2 ribosomal RNAs, 22 transfer RNAs and one major noncoding region (CR region).The extended termination associated sequences (ETAS-1 and ETAS-2) and conserved sequence block 1 (CSB-1) were found in the CR region. The putative origin of replication for the light strand (O L) of M. f. calamorum was 35bp long and showed high conservation in stem and adjacent sequences, but the difference existed in the loop region among three species of genus Microtus. In order to investigate the phylogenetic position of M. f. calamorum, the phylogenetic trees (Maximum likelihood and Bayesian methods) were constructed based on 12 protein-coding genes (except for ND6 gene) on H strand from 16 rodent species. M. f. calamorum was classified into genus Microtus, Arvcicolinae for the highly phylogenetic relationship with Microtus kikuchii (Taiwan vole). Further phylogenetic analysis results based on the cytochrome b gene ranged from M. f. calamorum to one of the subspecies of M. fortis, which formed a sister group of Microtus middendorfii in the genus Microtus. © 2012 Elsevier B.V.

Loading Shanghai Laboratory Animals Research Center collaborators
Loading Shanghai Laboratory Animals Research Center collaborators