Entity

Time filter

Source Type


Ono N.N.,University of California at Davis | Qin X.,University of California at Davis | Wilson A.E.,University of California at Davis | Li G.,University of California at Davis | And 4 more authors.
PLoS ONE | Year: 2016

Hydrolyzable tannins (HTs) play important roles in plant herbivore deterrence and promotion of human health. A critical step in HT production is the formation of 1-O-galloyl-β-D-glucopyranoside (β-glucogallin, ester-linked gallic acid and glucose) by a UDP-glucosyltransferase (UGT) activity. We cloned and biochemically characterized four candidate UGTs from pomegranate (Punica granatum), of which only UGT84A23 and UGT84A24 exhibited β-glucogallin forming activities in enzyme assays. Although overexpression and single RNAi knockdown pomegranate hairy root lines of UGT84A23 or UGT84A24 did not lead to obvious alterations in punicalagin (the prevalent HT in pomegranate) accumulation, double knockdown lines of the two UGTs resulted in largely reduced levels of punicalagins and bis-hexahydroxydiphenyl glucose isomers. An unexpected accumulation of galloyl glucosides (ether-linked gallic acid and glucose) was also detected in the double knockdown lines, suggesting that gallic acid was utilized by an unidentified UGT activity for glucoside formation. Transient expression in Nicotiana benthamiana leaves and immunogold labeling in roots of pomegranate seedlings collectively indicated cytosolic localization of UGT84A23 and UGT84A24. Overall, functional characterization and localization of UGT84A23 and UGT84A24 open up opportunities for further understanding the regulatory control of HT metabolism in plants and its coordination with other biochemical pathways in the metabolic network. © 2016 Ono et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Source


Qin X.,University of California at Davis | Fischer K.,University of California at Davis | Fischer K.,University of California at Merced | Yu S.,University of California at Davis | And 5 more authors.
BMC Plant Biology | Year: 2016

Background: β-carotene, the most active provitamin A molecule produced by plants, plays important roles in human nutrition and health. β-carotene does not usually accumulate in the endosperm (i.e. flour) of mature wheat grains, which is a major food source of calories for humans. Therefore, enriching β-carotene accumulation in wheat grain endosperm will enable a sustainable dietary supplementation of provitamin A. Several metabolic genes affecting β-carotene accumulation have already been isolated from wheat, including phytoene synthase 1 (PSY1), lycopene ε-cyclase (LCYe) and carotenoid β-ring hydroxylase1/2 (HYD1/2). Results: In this work, we cloned and biochemically characterized two carotenoid cleavage dioxygenases (CCDs), CCD1 and CCD4, from wheat. While CCD1 homoeologs cleaved β-apo-8'-carotenal, β-carotene, lutein and zeaxanthin into apocarotenoid products, CCD4 homoeologs were inactive towards these substrates in in vitro assays. When analyzed by real-time qPCR, PSY1, LCYe, HYD1/2 and CCD1/4 homoeologs showed distinct expression patterns in vegetative tissues and sections of developing tetraploid and hexaploid wheat grains, suggesting that carotenoid metabolic genes and homoeologs are differentially regulated at the transcriptional level in wheat. Conclusions: The CCD1/4 enzyme activity and the spatial-temporal gene expression data provide critical insights into the specific carotenoid metabolic gene homoeologs that control β-carotene accumulation in wheat grain endosperm, thus establishing the knowledge base for generation of wheat varieties with enhanced β-carotene in the endosperm through breeding and genome editing approaches. © 2016 The Author(s). Source


Hu C.,East China Normal University | Hu C.,Shanghai Key Laboratory of Plant Functional Genomics and Resources | Hu C.,Chinese Academy of Sciences | Tian H.,East China Normal University | And 7 more authors.
PLoS ONE | Year: 2016

A molecular phylogeny of Asiatic species of Goodyera (Orchidaceae, Cranichideae, Goodyerinae) based on the nuclear ribosomal internal transcribed spacer (ITS) region and two chloroplast loci (matK and trnL-F) was presented. Thirty-five species represented by 132 samples of Goodyera were analyzed, along with other 27 genera/48 species, using Pterostylis longifolia and Chloraea gaudichaudii as outgroups. Bayesian inference, maximum parsimony and maximum likelihood methods were used to reveal the intrageneric relationships of Goodyera and its intergeneric relationships to related genera. The results indicate that: 1) Goodyera is not monophyletic; 2) Goodyera could be divided into four sections, viz., Goodyera, Otosepalum, Reticulum and a new section; 3) sect. Reticulum can be further divided into two subsections, viz., Reticulum and Foliosum, whereas sect. Goodyera can in turn be divided into subsections Goodyera and a new subsection. © 2016 Hu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Source


Wilson A.E.,University of California at Davis | Matel H.D.,Cavite State University | Tian L.,University of California at Davis | Tian L.,Shanghai Key Laboratory of Plant Functional Genomics and Resources | Tian L.,Chinese Academy of Sciences
Phytochemistry Reviews | Year: 2016

Acylation of core compound skeletons, together with other modifications, plays a significant role in producing the incredible diversity of plant specialized metabolites. Two major classes of acyltransferases, the BAHD and serine carboxypeptidase-like (SCPL) acyltransferases, can bring together through acylation compounds from the same or divergent metabolic pathways. BAHD acyltransferases (BAHD-ATs) employ CoA thioesters as the activated substrate, SCPL acyltransferases (SCPL-ATs), on the other hand, utilize β-acetal esters, typically glucose esters formed by UDP glycosyltransferases (UGTs). While the general trend of high energy glucose ester enabled acyltransfers is seen throughout the spermatophytes (seed plants), the specific metabolites that are conjugated appear to be lineage specific. In this review, we examine the reaction mechanism, biochemical property and evolutionary relationship of SCPL-ATs that utilize various glucose ester donors and acceptors from the same or different plant specialized metabolic pathways. The occurrence and taxonomic distribution of galloylated flavan-3-ols, hydrolyzable tannins and galloylated flavonols are also evaluated. Furthermore, glucose ester (acyl donor)-forming UGT activities and the subcellular localization of the UGT and SCPL-AT catalyzed reactions are discussed. © 2016 Springer Science+Business Media Dordrecht Source


Cao J.,Shanghai Key Laboratory of Plant Functional Genomics and Resources | Jiang M.,Shanghai Key Laboratory of Plant Functional Genomics and Resources | Li P.,Shanghai Key Laboratory of Plant Functional Genomics and Resources | Chu Z.,Shanghai Key Laboratory of Plant Functional Genomics and Resources | Chu Z.,Chinese Academy of Sciences
BMC Genomics | Year: 2016

Background: The type-2C protein phosphatases (PP2Cs), negatively regulating ABA responses and MAPK cascade pathways, play important roles in stress signal transduction in plants. Brachypodium distachyon is a new model plant for exploring the functional genomics of temperate grasses, cereals and biofuel crops. To date, genome-wide identification and analysis of the PP2C gene family in B. distachyon have not been investigated. Results: In this study, 86 PP2C genes in B. distachyon were identified. Domain-based analyses of PP2C proteins showed that they all contained the phosphatase domains featured as 11 conserved signature motifs. Although not all phosphatase domains of BdPP2C members included all 11 motifs, tertiary structure analysis showed that four residues contributing to magnesium/manganese ions (Mg2+/Mn2+) coordination were conserved, except for two noncanonical members. The analysis of their chromosomal localizations showed that most of the BdPP2C genes were located within the low CpG density region. Phylogenetic tree and synteny blocks analyses among B. distachyon, Arabidopsis thaliana and Oryza sativa revealed that all PP2C members from the three species can be phylogenetically categorized into 13 subgroups (A-M) and BdPP2Cs were evolutionarily more closely related to OsPP2Cs than to AtPP2Cs. Segmental duplications contributed particularly to the expansion of the BdPP2C gene family and all duplicated BdPP2Cs evolved mainly from purifying selection. Real-time quantitative reverse transcription PCR (qRT-PCR) analysis showed that BdPP2Cs were broadly expressed in disparate tissues. We also found that almost all members displayed up-regulation in response to abiotic stresses such as cold, heat, PEG and NaCl treatments, but down-regulation to biotic stresses such as Ph14, Guy11 and F0968 infection. Conclusions: In the present study, a comprehensive analysis of genome-wide identification and characterization of protein domains, phylogenetic relationship, gene and protein structure, chromosome location and expression pattern of the PP2C gene family was carried out for the first time in a new model monocot, i.e., B. distachyon. Our results provide a reference for genome-wide identification of the PP2C gene family of other species and also provide a foundation for future functional research on PP2C genes in B. distachyon. © 2016 Cao et al. Source

Discover hidden collaborations