Shanghai, China

The Shanghai Institute of Technology is a high-leveled, multi-disciplined, application-oriented full-time tertiary education institution in Shanghai, People's Republic of China.Shanghai Institute of Technology is a high-levelled, multi-disciplined, application-oriented full-time institution of tertiary education. Authorized by Chinese Ministry of Education in April, 2000, SIT was established by merging the former three institutions which had a history of over fifty years. Wikipedia.


Time filter

Source Type

Zhang X.,Shanghai Institute of Technology
IEEE Transactions on Vehicular Technology | Year: 2013

This paper presents a sensorless control system for an electric-vehicle (EV) induction-motor (IM) drive embedded with an indirect vector controller and a fixed-boundary-layer sliding-mode (FBLSM) observer. No speed or even voltage measurements are required. This novel FBLSM observer could accurately estimate the speed and flux even without known load torque, where chattering on estimations due to switching functions in normal sliding-mode observers is almost completely eliminated. The proof of observability in a wide speed range (including very low speeds) is given. The indirect vector controller with feedforward compensation is responsible for tracking motor speed or torque commands, which manages to accelerate algorithm processing and to enhance transient performance. The experimental results based on a high-power driver-load motor configuration validate the accuracy of the observer and the dynamical performance of the controller under multitrapezoidal speed and vehicle driving cycle torque-speed commands, taking into consideration unexpected parameter disturbances. © 2013 IEEE.


Patent
Sinopec and Shanghai Institute of Technology | Date: 2014-09-24

This invention relates to a molecular sieve, which has a specific XRD diffraction pattern and a specific layered structure. As compared with a prior art molecular sieve, the molecular sieve according to this invention exhibits improved catalytic performances and good service life and regeneration performance. The molecular sieve can be produced with a simplified procedure, under mild operation conditions, with less energy and material consumption and less side reactions, with a high product purity at low cost and a high yield. The molecular sieve according to this invention is especially suitable for use as an adsorbent or a catalyst.


Patent
Shanghai Institute of Technology and Sinopec | Date: 2014-01-27

The present disclosure provides a premixer for at least two gases, comprising: a tabular body having a closed end and an opposite, open end; a first flow passage for receiving a first gas, the first flow passage axially extending through the closed end into the tabular body in a sealable manner; a conical tube arranged in the tabular body, wherein a small end of the conical tube communicates with the first flow passage, and a large end of the conical tube extends toward the open end with an edge thereof being fixed to an inner wall of the tabular body, thereby defining a sealed distribution chamber between the tabular body and the conical tube; and a second flow passage arranged on a side portion of the tabular body for receiving a second gas, wherein the second flow passage communicates with the distribution chamber, so that the second gas can be introduced into said conical tube via the distribution chamber in a substantially radial manner. The present disclosure further relates to a radially fixed bed reactor comprising the premixer, a reaction system of oxidative dehydrogenation of butene comprising the racially fixed bed reactor, and a corresponding process.


Device for use in a fluidized bed reactor includes a gas-solid separator communicated with an outlet of the fluidized bed reactor; a vertically arranged damper, a solid outlet of the gas-solid separator communicated with a lower region of the damper, a gas outlet of the gas-solid separator communicated with an upper region of the damper; a fine gas-solid separator, an inlet of the fine gas-solid separator communicated with the upper region of the damper, and a solid outlet of the fine gas-solid separator communicated with the lower region of the damper. Product from the fluidized bed reactor is fed into the preliminary gas-solid separator, most solid catalysts separated and fed into the lower region; the product entraining the rest catalysts is fed into the upper region, and into the fine gas-solid separator, the rest catalysts fed into the lower region; and final product is obtained from the fine gas-solid separator.


Patent
Shanghai Institute of Technology and Sinopec | Date: 2014-03-05

A process for producing light olefins is provided. A feedstock enters a pre-reaction zone and contacts a catalyst comprising at least one silicon-aluminophosphate molecular sieve and produces a gas-phase stream; the gas-phase stream and the catalyst enter at least one riser, and the gas-phase stream and the catalyst pass from an outlet of the at least one riser and enter a gas-solid rapid separation zone; the separated gas-phase stream enters a separation section; a first portion of the separated catalyst returns to the pre-reaction zone, and a second portion is regenerated in a regenerator; wherein an inlet of the at least one riser extends into the pre-reaction zone, about 60% to about 90% of the height of the at least one riser passes through a heat exchange zone, and the outlet extends into the gas-solid rapid separation zone.


Patent
Shanghai Institute of Technology and Sinopec | Date: 2013-05-15

This invention relates to a supported quaternary phosphonium catalyst, preparation thereof and use thereof in producing dialkyl carbonates. The supported quaternary phosphonium catalyst of this invention has the following average molecular structure (I), and is characterized by a relatively high and stable catalyst activity. wherein, each of X, L, n, R_(1), R_(2), R_(3 )and is the same as that in the specification.


Patent
Sinopec and Shanghai Institute of Technology | Date: 2014-10-30

A method for producing an aromatic hydrocarbon with an oxygenate as raw material, includes: i) reacting an oxygenate in at least one aromatization reactor to obtain an aromatization reaction product; ii) separating the aromatization reaction product to obtain a gas phase hydrocarbons flow X and a liquid phase hydrocarbons flow Y; iii) after removing gas and/or a part of the oxygenate from the gas phase hydrocarbons flow X, a hydrocarbons flow X1 containing a non-aromatic hydrocarbon is obtained; or after removing gas and/or a part of the oxygenate from the gas phase hydrocarbons flow X, a reaction is conducted in another aromatization reactor and a separation is conducted to obtain a flow X2 containing a non-aromatic hydrocarbon and a flow X3 containing an aromatic hydrocarbon. The flows are further treated.


Patent
Sinopec and Shanghai Institute of Technology | Date: 2014-06-17

This invention relates to a surfactant composition, production and use thereof in tertiary oil recovery. The present surfactant composition comprises a cationic surfactant and an anionic-nonionic surfactant, and exhibits significantly improved interfacial activity and stability as compared with the prior art. With the present surfactant composition, a flooding fluid composition for tertiary oil recovery with improved oil displacement efficiency and oil washing capability as compared with the prior art could be produced.


Patent
Sinopec and Shanghai Institute of Technology | Date: 2013-07-04

This invention relates to an alkylating process for alkyl benzenes, including the steps of: a) an alkyl benzene and a first stream of alkylating agent being fed into a first reaction zone, contacting with a catalyst A, to produce a process stream I; b) the process stream I and a second stream of alkylating agent being fed into at least one second reaction zone, contacting with a catalyst B, to produce a process stream II; and c) the process stream II being fed into at least one third reaction zone, contacting with a catalyst C, to produce a process stream III containing an alkylate. The present alkylating process can improve the utilization efficiency of the alkylating agent.


Patent
Shanghai Institute of Technology and Sinopec | Date: 2013-01-08

The present invention relates to a process for separating ethylene glycol and 1,2-butanediol. A material flow containing ethylene glycol and 1,2-butanediol gets into the lower-middle part of the azeotropic rectification column C3 after the light components are removed by the separating columns C1 and C2, wherein the ethylene glycol and the azeotropic agent added from the top of the column form azeotrope which is distilled out from the top of the column and gets into the phase separator D1 after being condensed, the upper phase enriched with azeotropic agent after the phase was separated returns to the top of the column to continue to participate in azeotropy, and the lower phase enriched with ethylene glycol gets into the fourth separating column C4 to be refined to obtain the ethylene glycol product.

Loading Shanghai Institute of Technology collaborators
Loading Shanghai Institute of Technology collaborators