Entity

Time filter

Source Type


Feng Y.,Shanghai JiaoTong University | Yu Y.-M.,Shanghai JiaoTong University | Yin M.-Z.,Shanghai JiaoTong University | Hong L.,Shanghai JiaoTong University | And 2 more authors.
Journal of Nutritional Science and Vitaminology | Year: 2012

Vitamin A is a key micronutrient required during crucial stages of embryonic development and vitamin A deficiency (VAD) results in embryonic heart malformation. The pleiotropic functions of vitamin A are mediated by specific nuclear receptors: the retinoic acid receptors (RARα, -β, and -γ) and the retinoic X receptors (RXRα, -β, and -γ). The action of nuclear receptors has been implicated in controlling of cell proliferation, differentiation and apoptosis, and the expressions of these receptor genes are regulated by retinoic acid levels during the early stages of embryonic development. GATA-4 is one of the earliest transcription factors expressed in developing cardiac cells. However, the functional links of specific nuclear receptors to heart development in VAD embryos are not clearly understood. In our study, weaning female Sprague-Dawley rats were fed a modified diet containing different concentrations of vitamin A according to the American Institute of Nutrition 93 Growth Purified Diet. After 10-wk feeding, the female rats were mated with normal male rats, and a portion of them were transferred to a diet with enough added vitamin A for the pregnancy cycle. The embryo hearts were dissected out at embryonic day 13.5 (E13.5) to study the expression of RARs, RXRs and GATA-4. The embryo hearts from E18.5 were for observation of ultrastructural changes. In comparison to vitamin A supplemented groups, the embryo hearts from vitamin A insufficient groups exhibited ultrastructural changes and significantly lower expression of GATA-4, RARα, and -β, and higher expression of RXRα and - γ. Our findings suggest that the down-regulation of RARs and the up-regulation of RXRs resulted from VAD affected GATA-4 gene expression, which resulted in ultrastructural changes in embryo hearts due to maternal insufficiency of vitamin A during pregnancy. Source


Feng Y.,Shanghai JiaoTong University | Zhao L.-Z.,Shanghai JiaoTong University | Hong L.,Shanghai JiaoTong University | Shan C.,Shanghai JiaoTong University | And 3 more authors.
Journal of Nutritional Biochemistry | Year: 2013

Epigenetics might explain correlations between lifestyle and risk of disease. Maternal diet has been shown to dynamically alter epigenetic regulation, including affecting DNA methylation status. This study was designed to test the hypothesis that GATA-4 gene methylation would lead to congenital heart defects in vitamin A-deficient offspring. Ten weaning female rats (VAN group) were fed with a diet which contents 4 IU vitamin A/g diet, while 20 rats (VAD group) were maintained on a diet without vitamin A. After 10 weeks of feeding, all the female rats were mated with normal male rats. The VAN group and a portion of VAD group rats were still given the same diet as before mating, while the rest of the rats from the VAD group (VADS group) were transferred to a diet with enough added vitamin A (10 IU/g diet) for the pregnancy cycle. The embryo hearts were dissected out at embryonic day 13.5 (E13.5) for observation of cardiac development, GATA-4 gene methylation status and the expression of DNA methyltransferases (DNMTs). Embryos from vitamin A-deficient group exhibited a high incidence of cardiac defects. High methylation was present in the CpG loci of GATA-4 gene with a low expression of GATA-4 mRNA from vitamin A-deficient group embryos. Moreover, up-regulation of DNMT1 and down-regulation of DNMT3a and DNMT3b expression were found in this group embryo. These findings show that aberrant methylation is one of key mechanisms to heart defects in vitamin A-deficient offspring. DNMTs play a critical role in this process. © 2013 Elsevier Inc. Source


Chen Y.,Shanghai JiaoTong University | Chen Y.,Shanghai Institute of Pediatric Research | Chen Y.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition | Jie W.,Shanghai Institute of Pediatric Research | And 6 more authors.
Critical Reviews in Eukaryotic Gene Expression | Year: 2012

Lysine-specific demethylase 1 (LSD1), the first identified histone demethylase, was belonged to the superfamily of the flavin adenine dinucleotide (FAD)-dependent amine oxidases. LSD1 specifically demethylates mono or dimethylated dimethylated histone H3 lysine4 (H3K4) and H3 lysine 9 (H3K9) via a redox process. Recently evidences showed that LSD1 played an important role in a broad spectrum of biological processes, including cell proliferation, adipogenesis, spermatogenesis, chromosome segregation and embryonic development. Furthermore, LSD1 also could promote progress of tumor by inhibiting the tumor suppressor activity of p53. To date, as a potential drug for discovering anti-tumor drugs, the medical significance of LSD1 inhibitors have been greatly appreciated. Here, we reviewed the remarkable progress being made in understanding of LSD1, mainly on its structure, basic function and medical application in tumor therapy. © 2011 Begell House, Inc. Source


Xiao Y.,Shanghai Institute of Pediatric Research | Chen Y.,Shanghai Institute of Pediatric Research | Chen Y.,Shanghai JiaoTong University | Wen J.,Shanghai Institute of Pediatric Research | And 4 more authors.
Critical Reviews in Eukaryotic Gene Expression | Year: 2012

Thymosin β4 (Tβ4), a 5 kDa protein, has been demonstrated to play an important role in a variety of biological activities, such as actin sequestering, cellular motility, migration, inflammation, and damage repair. Recently, several novel findings provided compelling evidence that Tβ4 played a key role in facilitating tumor metastasis and angiogenesis. It has been found that Tβ4 expressed increasingly in a number of metastatic tumors, which was associated with an increased expression of a known angiogenic factor, vascular endothelial growth factor. Thus, Tβ4 provided a potential target of opportunity for cancer management, especially for cancer metastasis therapy. © 2012 Begell House, Inc. Source


Chen Y.,Shanghai JiaoTong University | Chen Y.,Shanghai Institute of Pediatric Research | Chen Y.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition | Ge W.,Shanghai JiaoTong University | And 6 more authors.
International Journal of Molecular Medicine | Year: 2012

Intestinal fibrosis is one of the major serious complications of Crohn's disease (CD). However, there are no effective antifibrotic drugs to treat intestinal fibrosis in CD. Therefore, it is important to understand the pathogenesis of fibrosis in CD. It has been reported that members of the miR-200 family are essential in the regulation of renal fibro-genesis. In this study, we analyzed the function of miR-200a and miR-200b in intestinal fibrosis, which was induced by transforming growth factor β1 (TGF-β1) in vitro. Furthermore, we detected the expression of miR-200a and miR-200b in CD specimens, which were divided into groups of fibrosis and no-fibrosis. The results of this study showed that administration of miR-200b could partially protect intestinal epithelial cells from fibrogenesis invitro. Furthermore, we found that miR-200b was overexpressed in the serum of the fibrosis group. The results suggest that miR-200b has potential value for diagnostic and therapeutic applications for CD patients with fibrosis complications. Source

Discover hidden collaborations