Time filter

Source Type

Hu W.,Shanghai FRP Research Institute Co.
Key Engineering Materials | Year: 2014

A rapid sintering densification treatment was performed on the surface of silica ceramic by using hydrogen-oxygen flame. The effects of surface densification processing on the phase composition, microstructure and bending strength of the silica ceramic were studied. Results showed that, after the densification processing, there was no obvious change in the phase composition of the silica ceramic but gradual transition structure happened. The transition structure not only prevents the abrupt structural change from the densification layer to porous layer of the silica ceramic but also guarantees the strong interface bonding between adjacent layers, leading to the improved bending strength. The present densification processing could realize the integrated fabrication of silica material with different density. © (2015) Trans Tech Publications, Switzerland.

Tang S.,Nanjing Research Institute of Electronics Technology | Shen L.,Shanghai FRP Research Institute Co. | He B.,Nanjing Research Institute of Electronics Technology | Li Y.,Nanjing Research Institute of Electronics Technology
Fuhe Cailiao Xuebao/Acta Materiae Compositae Sinica | Year: 2016

By applying the impedance matching technique and using metallic wire grid electrical tunable unit, the optimization design of electrical tunable was performed for plate joints (or reinforcing rib) in large partitioning dielectric radome. On the premise of guaranteeing mechanical performance of joint structure, the transmission efficiency of optimized mixed dielectric structure containing metallic wire grids improves by about 20% compared with plate joints. In addition, by loading different metallic wire grids, the frequency range of best transmission for mixed structure can be adjusted, thus can be used to develop radomes of various frequency. This provides a novel technological pathway to design high-performance large dielectric radomes. © 2016, BUAA Culture Media Group Ltd. All right reserved.

Wu H.,Shanghai FRP Research Institute Co. | Liu B.-Y.,Shanghai Maritime University
Gongneng Cailiao/Journal of Functional Materials | Year: 2012

A polyol synthesis method was developed for preparation of amorphous carbon nanoparticles with high specific surface area under ambient atmosphere by the reaction of ferrocene and ammonium bromide in triethylene glycol (TREG) at 200°C. Samples were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (SEM), transmission electron microscopy (TEM) and N 2 adsorption-desorption isotherms. It was found that the nanoparticles were complete amorphous and agglomerate together due to the strong surface tension. The amorphous carbon nanoparticles with a diameter of 30-70 nm have a wide size distribution of mesopores with a brunauer-emmett-teller (BET) surface area of 578.68 m 2/g. It was proposed that the dissolved reactants uniformly dispersing in the TREG could react at a molecular level to form uniform carbon nanoparticles.

Lei J.-X.,Shanghai University | Lei J.-X.,Shanghai FRP Research Institute Co. | Shi Y.,Shanghai University | Shi J.-B.,Shanghai FRP Research Institute Co. | Li X.,Shanghai University
Rengong Jingti Xuebao/Journal of Synthetic Crystals | Year: 2015

AlON powders were synthesized by carbothermal reduction method using nano-sized Al2O3 and micron carbon powder as raw materials, and transparent AlON ceramics were densified by pressureless sintering under the condition of 1875 ℃×24 h. The mechanical, thermal and optical properties of the transparent AlON ceramic, as well as its microstructure were also characterized. The results show that the obtained transparent AlON ceramic has an average grain size of 110-120 μm. Its bending strength is (275±25) MPa at room temperature, and its specific heat capacity and thermal conductivity at room temperature reach 0.781 J/(g·K) and 12.3 W/(m·K), respectively. The in-line transmittance of the AlON ceramic sample(1 mm-thick) in wavelength range between 1000-5000 nm is around 80%, with the maximum transmittance of 83.7% at 3.93 μm. ©, 2015, Chinese Ceramic Society. All right reserved.

Shen L.X.,Shanghai FRP Research Institute Co.
Materials Science Forum | Year: 2015

With the process optimizing, electromagnetic performance designing, structural strength/stiffness checking and testing, a cost-effective and environment-friendly approach to manufacturing a submarine radome and its related products at low cost is introduced in this article: The submarine radome is made of an epoxy-matrix composite reinforced with E-glass fabric through the vacuum infusion and heating cure processing. © (2015) Trans Tech Publications, Switzerland.

Discover hidden collaborations