Time filter

Source Type

Liu K.,State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process | Liu K.,East China University of Science and Technology | Chen L.,Shanghai Fisheries Research Institute | Zhang W.,State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process | And 4 more authors.
Ecotoxicology | Year: 2015

Lead (Pb) and decabromodiphenyl ether (BDE209) are the main contaminants at e-waste recycling sites, and their potential toxicological effects on terrestrial organisms have received extensive attention. However, the impacts on the oxidative perturbations and hydroxyl radical (·OH) generation in earthworms of exposure to the two chemicals remain almost unknown. Therefore, indoor incubation tests were performed on control and contaminated soil samples to determine the effects of Pb in earthworms Eisenia fetida in the presence of BDE209 through the use of several biomarkers in microcosms. The results have demonstrated that the addition of BDE209 (1 or 10 mg kg−1) decreased the enzymatic activities [superoxide dismutase, catalase (CAT), peroxidase] and total antioxidant capacity (T-AOC) compared with exposure to BDE209 alone (50, 250 or 500 mg kg−1). Electron paramagnetic resonance spectra indicated that ·OH radicals in earthworms were significantly induced by Pb in the presence of BDE209. The changing pattern of malondialdehyde (MDA) contents was accordant with that of ·OH intensity suggested that reactive oxygen species might lead to cellular lipid peroxidation. Furthermore, CAT exhibited more sensitive response to single Pb exposure than the other biomarkers, while T-AOC, ·OH and MDA might be three most sensitive biomarkers in earthworms after simultaneous exposure to Pb and BDE209. The results of these observations suggested that oxidative stress appeared in E. fetida, and it may play an important role in inducing the Pb and BDE209 toxicity to earthworms. © 2014, Springer Science+Business Media New York.


Zhou T.,Shanghai JiaoTong University | Wang N.,Shanghai Fisheries Research Institute | Xue Y.,Shanghai JiaoTong University | Ding T.,Shanghai JiaoTong University | And 3 more authors.
ACS Applied Materials and Interfaces | Year: 2015

In this study, tilapia skin collagen sponge and electrospun nanofibers were developed for wound dressing. The collagen sponge was composed of at least two α-peptides, and its denaturation temperature was 44.99 °C. It did not change the number of spleen-derived lymphocytes in BALB/c mice, the ratio of CD4+/CD8+ lymphocytes, and the level of IgG or IgM in Sprague-Dawley rat. The contact angle, tensile strength, and weight loss temperature of collagen nanofibers were 21.2°, 6.72 ± 0.44 MPa, and 300 °C, respectively. The nanofibers could promote the viabilities of human keratinocytes (HaCaTs) and human dermal fibroblasts (HDFs), inducing epidermal differentiation through the gene expression of involucrin, filaggrin, and type I transglutaminase of HaCaTs, and they could also accelerate migration of HaCaTs with the expression of matrix metalloproteinase-9 and transforming growth factor-β1 (TGF-β1). Besides, the nanofibers could upregulate the protien level of Col-I in HDFs both via a direct effect and TGF-β1 secreted from HaCaTs, thus facilitating the formation of collagen fibers. Furthermore, the collagen nanofibers stimulated the skin regeneration rapidly and effectively in vivo. These biological effects could be explained as the contributions from the biomimic extracellular cell matrix structure, hydrophilicity, and the multiple amino acids of the collagen nanofibers. © 2015 American Chemical Society.


Quan W.,CAS East China Sea Fisheries Research Institute | Zheng L.,Administration Bureau of Jiuduansha Wetland Natural Reserve | Li B.,Shanghai Environmental Monitoring Center | An C.,Shanghai Fisheries Research Institute
Chinese Journal of Oceanology and Limnology | Year: 2013

Oyster reefs have an equivalent, complex 3-dimensional structure to vegetated habitats and may provide similar functions in estuarine environments. Nevertheless, few studies have compared oyster reefs with adjacent natural shallow-water habitats. Here the resident benthic macroinvertebrate communities in an artificial oyster (Crassostrea ariakensis) reef and in adjacent natural estuarine shallow-water habitats (salt marsh, intertidal mudflat, and subtidal soft bottom) in the Changjiang (Yangtze) River estuary were described. The mean total densities and biomass, Margalef's species richness, Pielou's evenness and Shannon-Weaver biodiversity indices of the resident benthic macroinvertebrate communities differed significantly among the habitats. Significantly higher densities and biomass of benthic macroinvertebrates occurred in the oyster reef compared with the other three habitats. Ordination plots showed a clear separation in benthic macroinvertebrate communities among the four habitat types. The results demonstrated that the artificial oyster reef supported distinct and unique benthic communities, playing an important role in the complex estuarine habitat by supplying prey resources and contributing to biodiversity. In addition, the results suggested that the oyster reef had been restored successfully. © 2013 Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag Berlin Heidelberg.


Shi Y.,Shanghai Fisheries Research Institute | Shi Y.,Shanghai Ocean University | Zhang G.,Shanghai Fisheries Research Institute | Liu J.,Shanghai Fisheries Research Institute | Zang W.,Shanghai Ocean University
Aquaculture Research | Year: 2011

The respiratory rates of Tawny puffer Takifugu flavidus juvenile were measured at four temperatures (20, 23, 26 and 29 °C) and seven salinities (5, 10, 15, 20, 25, 30 and 35 g L-1). The results showed that both temperature and salinity significantly affected the oxygen consumption of tawny puffer juvenile. The oxygen consumption rate (OCR) increased significantly with an increase in the temperature from 20 to 29 °C. Over the entire experimental temperature range (20-29 °C), the Q10 value was 1.59, and the lowest Q10 value was found between 23 and 26 °C. The optimal temperature for the juvenile lies between 23 °C and 26 °C. The OCR at 25 g L-1 was the highest among all salinity treatments. The OCRs show a parabolic relationship with salinity (5-35 g L-1). From the quadratic relationship, the highest OCR was predicted to occur at 23.56 g L-1. The optimal salinity range for the juvenile is from 23 to 25 g L-1. The results of this study are useful towards facilitating an increase in the production of the species juvenile culture. © 2010 The Authors. Aquaculture Research © 2010 Blackwell Publishing Ltd.


Shi Y.,Shanghai Fisheries Research Institute | Zhang G.,Shanghai Fisheries Research Institute | Liu J.,Shanghai Fisheries Research Institute | Zhu Y.,Shanghai Fisheries Research Institute | Xu J.,Shanghai Fisheries Research Institute
Bioresource Technology | Year: 2011

A recirculating aquaculture system was developed for treating Pacific white shrimp (Litopenaeus vannamei) production wastewater using an integrated vertical-flow (IVF) and five connected integrated horizontal flow (IHF) constructed wetlands as water treatment filters for mesohaline conditions (8.25‰-8.26‰ salinity). The constructed wetlands demonstrated the ability to reduce total nitrogen, total ammonia nitrogen, nitrite nitrogen, nitrate nitrogen, total phosphorous, chemical oxygen demand, and total suspended solids to levels significantly lower than those in effluents from culture tanks. Various water quality parameters in the culture tanks were deemed suitable for shrimp culture. The actual ratio of wetland area (A w) to culture tank area (A t) was 1.1439, and the estimated optimal ratio A w/A t was approximately 1. The IVF-IHF wetlands showed flexibility and reliability in consistently removing the main pollutants from commercial recirculating and super-intensive shrimp growout systems throughout the culture period. © 2011 Elsevier Ltd.


Xiao Y.,Shanghai Fisheries Research Institute | Shao L.,Shanghai Fisheries Research Institute | Zhang C.,Shanghai Fisheries Research Institute | An W.,Shanghai Fisheries Research Institute
Virus Research | Year: 2014

A new strain of spring viraemia of carp virus, denominated SVCV-265, was isolated from an ornamental common carp (Cyprinus carpio) in Shanghai, China, 2013. The isolate could produce obvious cytopathic effects on EPC cells, while was shown to be of low virulence for juvenile koi. Complete genome sequencing revealed the genome of the SVCV-265 strain is 11,029 nucleotides in length and phylogenetic analysis showed the isolate was clustered within Asia clade but was divergent from Chinese A1, A2 and BJ0505-2 strains. Previous report indicated that the G and P gene of SVCV shared similar topologies of evolutionary trees. In this study, phylogenetic analysis based on the P gene sequences showed the SVCV-265 was clustered into Iai subgroup and divergent from Chinese isolates A1, A2 and BJ0505-2, which were clustered into Iaii group. However, sequence alignment of the G gene showed the SVCV-265 has a close relationship with A1, A2 and BJ0505-2 isolates. Recombination analysis of all the whole sequences of SVCV available revealed isolates A2 and BJ0505-2 were likely the homologous recombination descendants of the A1 and SVCV-265. The crossover regions were located between 3845-6387. nt for A2 and 3573-6444. nt for BJ0505-2, respectively. Phylogenetic analysis of the crossover region further confirmed these findings. This current study describes the molecular characterization of the new isolate SVCV-265 from China and is the first report of homologous recombination in SVCV. © 2014 Elsevier B.V.


Zhang G.,Shanghai Fisheries Research Institute | Shi Y.,Shanghai Fisheries Research Institute | Shi Y.,Shanghai Ocean University | Zhu Y.,Shanghai Fisheries Research Institute | And 2 more authors.
Aquaculture | Year: 2010

Tawny puffer Takifugu flavidus is a fish species that has aquaculture potential in China because of its high market value. To determine the optimal condition of salinity for embryo development and larval culture of the species, the effects of salinity (0‰, 5‰, 10‰, 15‰, 20‰, 25‰, 30‰, 35‰, 40‰, and 45‰) on egg hatching and the survival and growth of larvae at 3-23 days post-hatch (dph) were assessed. Embryonic hatching rates were above 70% at salinities of 5‰ to 45‰, and all embryos at 0‰ died 4 days after fertilization. Survival rates (> 75%) of larvae at 24 h post-hatch at salinities of 10‰ to 40‰ were significantly higher than that at salinities of 5‰ and 45‰. The highest hatching rates and lowest percentage of mortalities occurred at salinities of 10‰ to 20‰. Results suggest that the embryos can tolerate a wide range of salinity (10-40‰), and optimal range of salinity for embryo development is between 10‰ and 20‰. The time of egg hatching was not influenced by salinity. Larvae of tawny puffer continued to survive until Day 23 of post-hatch at salinities of 5‰ to 35‰, but all larvae died within 20 dph at 45‰. The highest survival rate occurred at salinities of 15‰ to 35‰, and the highest growth rate was found at salinities of 15‰ to 25‰. The results suggest that the optimal salinity for larval survival and growth is between 15‰ and 25‰. Crown Copyright © 2010.


Liu F.,Shanghai Ocean University | Liu F.,Shanghai Fisheries Research Institute | Li J.,Shanghai Ocean University | Fu J.,Shanghai Ocean University | And 2 more authors.
Fish and Shellfish Immunology | Year: 2011

C-type lectins play important roles in glycoprotein metabolism, multicellular integration and immunity. Based on their overall domain structure, they can be classified as different groups which possess different physiological functions. In this study, two novel simple C-type lectins were identified from grass carp (Ctenopharyngodon idellus), an important cultured fish in China. GcCL1 and gcCL2 share an essentially identical gene structure, a conserved promoter region shorter than 300 bp and an amino acid identity of 81.2%. Phylogenetic analysis indicated they may be products of gene duplication and could be classified as a new clade of group VII C-type lectins. Both of them were expressed in the eleven tissues examined, with the spleen having the highest abundance of transcript. The gcCL1 transcript was more abundant than gcCL2 in the majority of tissue samples from 2-yr-old grass carps, and was lower than those of gcCL2 before 15 days post-hatching. The expression of both genes was significantly up-regulated in spleen, muscle, skin, gills and hepatopancreas after induction by Aeromonas hydrophila. This is the first report that the expression of group VII C-type lectins could be induced by a pathogen, and indicates these lectins may be involved in the immune response to bacteria in fish. © 2011.


Yu A.-Q.,Shanghai Fisheries Research Institute | Shi Y.-H.,Shanghai Fisheries Research Institute | Wang Q.,East China Normal University
Fish and Shellfish Immunology | Year: 2016

Antimicrobial peptides are important immune effectors involved in mediating innate immune responses against intruding pathogens. Here, we successfully isolated and characterized a novel Type I crustin from the red claw crayfish Cherax quadricarinatus. The full-length cDNA encoded by this gene, designated CqCrs, comprised 608 bp, containing a 5'-untranslated region (UTR) of 55 bp, a 3'-UTR of 229 bp with a poly (A) tail, and an open reading frame (ORF) of 324 bp encoding a polypeptide of 107 amino acids. The deduced amino acid sequence of CqCrs exhibited a configuration typical of other crustacean Type I crustin orthologs, including one signal peptide region at the N-terminus between residues 1 and 16 and a long whey acidic protein (WAP) domain at the C-terminus between residues 60 and 107, along with a WAP-type "four-disulfide core" motif. Phylogenetic analysis showed that CqCrs was clustered first with other crustacean Type I crustins, then with other crustacean Type II crustins, and finally with other crustacean Type III crustins. Transcription of CqCrs was detected in all tissues, especially in immune tissues and was differentially induced in hemocytes post-stimulation with β-1, 3-glucan, lipopolysaccharides (LPS) and peptidoglycans (PG) at selected time-points. To clarify the biological activity of CqCrs, the recombinant CqCrs protein (r. CqCrs) was constructed and expressed in Escherichia coli BL21 (DE3). Purified r. CqCrs bound to diverse bacteria and inhibited the growth of different microbes to varying degrees. These findings suggest that CqCrs is involved in a specific innate immune recognition and defense mechanisms against bacterial and fungal in C. quadricarinatus. © 2015 Elsevier Ltd.


PubMed | Biomarker Technologies Corporation, Shanghai Ocean University, Shanghai Mudbeach Institute of Biological Resource Exploitation and Shanghai Fisheries Research Institute
Type: | Journal: Scientific reports | Year: 2017

The Chinese mitten crab Eriocheir sinensis is the most economically important cultivated crab species in China, and its genome has a high number of chromosomes (2n=146). To obtain sufficient markers for construction of a dense genetic map for this species, we employed the recently developed specific-locus amplified fragment sequencing (SLAF-seq) method for large-scale SNPs screening and genotyping in a F1 full-sib family of 149 individuals. SLAF-seq generated 127,677 polymorphic SNP markers, of which 20,803 valid markers were assigned into five segregation types and were used together with previous SSR markers for linkage map construction. The final integrated genetic map included 17,680 SNP and 629 SSR markers on the 73 linkage groups (LG), and spanned 14,894.9cM with an average marker interval of 0.81cM. QTL mapping localized three significant growth-related QTL to a 1.2cM region in LG53 as well as 146 sex-linked markers in LG48. Genome-wide QTL-association analysis further identified four growth-related QTL genes named LNX2, PAK2, FMRFamide and octopamine receptors. These genes are involved in a variety of different signaling pathways including cell proliferation and growth. The map and SNP markers described here will be a valuable resource for the E. sinensis genome project and selective breeding programs.

Loading Shanghai Fisheries Research Institute collaborators
Loading Shanghai Fisheries Research Institute collaborators