Entity

Time filter

Source Type


Xiang X.-G.,CAS Institute of Botany | Jin W.-T.,CAS Institute of Botany | Li D.-Z.,CAS Kunming Institute of Botany | Schuiteman A.,Herbarium | And 4 more authors.
PLoS ONE | Year: 2014

Collabieae (Orchidaceae) is a long neglected tribe with confusing tribal and generic delimitation and little-understood phylogenetic relationships. Using plastid matK, psaB, rbcL, and trnH-psbA DNA sequences and morphological evidence, the phylogenetic relationships within the tribe Collabieae were assessed as a basis for revising their tribal and generic delimitation. Collabieae (including the previously misplaced mycoheterotrophic Risleya) is supported as monophyletic and nested within a superclade that also includes Epidendreae, Podochileae, Cymbidieae and Vandeae. Risleya is nested in Collabiinae and sister to Chrysoglossum, a relationship which, despite their great vegetative differences, is supported by floral characters. Ania is a distinct genus supported by both morphological and molecular evidence, while redefined Tainia includes Nephelaphyllum and Mischobulbum. Calanthe is paraphyletic and consists four clades; the genera Gastrorchis, Phaius and Cephalantheropsis should be subsumed within Calanthe. Calanthe sect. Ghiesbreghtia is nested within sect. Calanthe, to which the disputed Calanthe delavayi belongs as well. Our results indicate that, in Collabieae, habit evolved from being epiphytic to terrestrial. © 2014 Xiang et al. Source


Jin W.-T.,CAS Institute of Botany | Jin X.-H.,CAS Institute of Botany | Schuiteman A.,Herbarium | Li D.-Z.,CAS Kunming Institute of Botany | And 4 more authors.
Molecular Phylogenetics and Evolution | Year: 2014

The subtribe Orchidinae, distributed predominantly in Eastern Asia and the Mediterranean, presents some of the most intricate taxonomic problems in the family Orchidaceae with respect to generic delimitation. Based on three DNA markers (plastid matK, rbcL, and nuclear ITS), morphological characters, and a broad sampling of Orchidinae and selected Habenariinae mainly from Asia (a total of 153 accessions of 145 species in 31 genera), generic delimitation and phylogenetic relationships within the subtribe Orchidinae and Habenariinae from Asia were assessed. Orchidinae and Asian Habenariinae are monophyletic, and Orchidinae is divided into distinct superclades. Many genera, such as Amitostigma, Habenaria, Hemipilia, Herminium, Platanthera, Peristylus and Ponerorchis, are not monophyletic. Habenaria is subdivided into two distantly related groups, while Platanthera is subdivided into three even more disparate groups. Many previously undetected phylogenetic relationships, such as clades formed by the Amitostigma-Neottianthe-Ponerorchis complex, Platanthera latilabris group, Ponerorchis chrysea, Sirindhornia, and Tsaiorchis, are well supported by both molecular and morphological evidence. We propose to combine Hemipiliopsis with Hemipilia, Amitostigma and Neottianthe with Ponerorchis, Smithorchis with Platanthera, and Aceratorchis and Neolindleya with Galearis, and to establish a new genus to accommodate Ponerorchis chrysea. Tsaiorchis and Sirindhornia are two distinctive genera supported by both molecular data and morphological characters. A new genus, Hsenhsua, and 41 new combinations are proposed based on these findings. © 2014 Elsevier Inc. Source


Raskoti B.B.,CAS Institute of Botany | Raskoti B.B.,University of Chinese Academy of Sciences | Jin W.-T.,CAS Institute of Botany | Xiang X.-G.,CAS Institute of Botany | And 6 more authors.
Cladistics | Year: 2016

The first comprehensive phylogenetic study of the orchid genus Herminium and its allies is presented, based on seven molecular markers (nuclear internal transcribed spacer, Xdh, chloroplast matK, psaB, psbA-trnH, rbcL and trnL-F) and 37 morphological characters. Phylogenetic analyses indicate that Herminium as currently delimited is paraphyletic and that several genera are deeply nested within it. Based on parsimony analysis of total evidence, the generic circumscription of Herminium is expanded to include Androcorys, Bhutanthera, Frigidorchis and Porolabium. Apomorphic and plesiomorphic character states are identified for various clades recovered in this study. A few species currently wrongly assigned to Peristylus and Platanthera are here included in Herminium. All necessary new combinations are made. © 2016 The Willi Hennig Society. Source


Xu S.,CAS Institute of Botany | Li D.,CAS Kunming Institute of Botany | Li J.,CAS Xishuangbanna Tropical Botanical Garden | Xiang X.,CAS Institute of Botany | And 4 more authors.
PLoS ONE | Year: 2015

DNA barcoding has been proposed to be one of the most promising tools for accurate and rapid identification of taxa. However, few publications have evaluated the efficiency of DNA barcoding for the large genera of flowering plants. Dendrobium, one of the largest genera of flowering plants, contains many species that are important in horticulture, medicine and biodiversity conservation. Besides, Dendrobium is a notoriously difficult group to identify. DNA barcoding was expected to be a supplementary means for species identification, conservation and future studies in Dendrobium. We assessed the power of 11 candidate barcodes on the basis of 1,698 accessions of 184 Dendrobium species obtained primarily from mainland Asia. Our results indicated that five single barcodes, i.e., ITS, ITS2, matK, rbcL and trnH-psbA, can be easily amplified and sequenced with the currently established primers. Four barcodes, ITS, ITS2, ITS+matK, and ITS2+matK, have distinct barcoding gaps. ITS+matK was the optimal barcode based on all evaluation methods. Furthermore, the efficiency of ITS+matK was verified in four other large genera including Ficus, Lysimachia, Paphiopedilum, and Pedicularis in this study. Therefore, we tentatively recommend the combination of ITS+matK as a core DNA barcode for large flowering plant genera. © 2015 Xu et al. Source


Wu H.-B.,Shanghai Institute of Landscape Gardening | Fang H.-L.,Shanghai Institute of Landscape Gardening | Peng H.-L.,Shanghai Chenshan Botanical Garden
Chinese Journal of Applied Ecology | Year: 2016

The effects of different vegetation types, compaction ways and soil basic physico-chemical properties on soil water reservoir in the typical newly-established green belts of Shanghai Chenshan Botanical Garden were studied. The results showed that the total reservoir capacity, detention capacity and effective storage for the Botanical Garden were lower than those of natural forests. However, the dead storage was very high accounting for 60.6% of the total reservoir capacity, resulting in reduced flood storage and drainage capacity for the greens. The total reservoir capacity and detention capacity of different vegetation types were in order of brush land> tree land> grassland> bamboo land> bare land. The effective storages of the brush land and the tree land were relatively high, whereas those of the bare land and the bamboo land were lower. The ratios of the dead storage over the total reservoir capacity in the bare land and the bamboo land were relatively high with the values 65.5% and 67.6%, respectively. The total reservoir capacity, detention capacity and effective storage of the brush land were significantly different from those of the bare land. The vegetation significantly improved the water storage and retention capacity for the soil, while the compaction by large machinery and man-caused trampling reduced the total reservoir capacity, detention capacity and effective storage of soils. The water reservoir properties were influenced by soil bulk density, saturated hydraulic conductivity, capillary porosity, non-capillary porosity, total porosity, clay and organic matter contents. Therefore, improving the soil physico-chemical properties might increase the soil reservoir capacity of the urban green belt effectively. © 2016, Science Press. All right reserved. Source

Discover hidden collaborations