Time filter

Source Type

Liu S.,Nanjing Agricultural University | Liu Y.,Nanjing Agricultural University | Jia Y.,Nanjing Agricultural University | Wei J.,Nanjing Agricultural University | And 6 more authors.
Plant Science | Year: 2017

Matrix metalloproteinases (MMPs) are a family of zinc- and calcium-dependent endopeptidases. Gm1-MMP was found to play an important role in soybean tissue remodeling during leaf expansion. In this study, Gm1-MMP was isolated and characterized. Its encoding protein had a relatively low phylogenetic relationship with the MMPs in other plant species. Subcellular localization indicated that Gm1-MMP was a plasma membrane protein. Gm1-MMP showed higher expression levels in mature leaves, old leaves, pods, and mature seeds, as well as was involved in the development of soybean seed. Additionally, it was involved in response to high temperature and humidity (HTH) stress in R7 leaves and seeds in soybean. The analysis of promoter of Gm1-MMP suggested that the fragment from −399 to −299 was essential for its promoter activity in response to HTH stress. The overexpression of Gm1-MMP in Arabidopsis affected the growth and development of leaves, enhanced leaf and developing seed tolerance to HTH stress and improved seed vitality. The levels of hydrogen peroxide (H2O2) and ROS in transgenic Arabidopsis seeds were lower than those in wild type seeds under HTH stress. Gm1-MMP could interact with soybean metallothionein-II (GmMT-II), which was confirmed by analysis of yeast two-hybrid assay and BiFC assays. All the results indicated that Gm1-MMP plays an important role in the growth and development of leaves and seeds as well as in tolerance to HTH stress. It will be helpful for us understanding the functions of Gm1-MMP in plant growth and development, and in response to abiotic stresses. © 2017 Elsevier B.V.


Wang S.,Nanjing Agricultural University | Tao Y.,Nanjing Agricultural University | Zhou Y.,Nanjing Agricultural University | Niu J.,Nanjing Agricultural University | And 7 more authors.
Plant Growth Regulation | Year: 2017

The developing seed of soybean is susceptible to high temperature and humidity (HTH) stress, resulting in pre-harvest seed deterioration in the field. Many genes are found to respond to the stress. Based on our previous proteomics study, an HTH-responsive gene, GmCDPKSK5, was isolated from soybean seed. GmCDPKSK5 encodes a cytoplasm- and membrane-associated protein, which belongs to Group I of the CDPK family. By yeast two-hybrid (Y2H) from soybean seed cDNA library, GmTCTP was screened as a GmCDPKSK5-interacting protein. The interaction between GmCDPKSK5 and GmTCTP was further verified using bimolecular fluorescence complementation and GST pull down assays. Expression levels of both GmCDPKSK5 and GmTCTP were induced by HTH stress in soybean seed. Our results indicated that GmCDPKSK5 and GmTCTP interact with each other and may function in responses to HTH stress in soybean developing seed. © 2017, Springer Science+Business Media Dordrecht.


Shu Y.,Nanjing Agricultural University | Shu Y.,Anhui Science and Technology University | Tao Y.,Nanjing Agricultural University | Wang S.,Nanjing Agricultural University | And 6 more authors.
Plant Cell Reports | Year: 2015

Key message: GmSBH1involves in response to high temperature and humidity stress.Abstract: Homeobox transcription factors are key switches that control plant development processes. Glycine max H1 Sbh1 (GmSBH1) was the first homeobox gene isolated from soybean. In the present study, the full ORF of GmSBH1 was isolated, and the encoded protein was found to be a typical class I KNOX homeobox transcription factor. Subcellular localization and transcriptional activation assays showed that GmSBH1 is a nuclear protein and possesses transcriptional activation activity in the homeodomain. The KNOX1 domain was found to play a clear role in suppressing the transcriptional activation activity of GmSBH1. GmSBH1 showed different expression levels among different soybean tissues and was involved in response to high temperature and humidity (HTH) stress in developing soybean seeds. The overexpression of GmSBH1 in Arabidopsis altered leaf and stoma phenotypes and enhanced seed tolerance to HTH stress. Overall, our results indicated that GmSBH1 is involved in growth, development, and enhances tolerance to pre-harvest seed deterioration caused by HTH stress in soybean. © 2015 Springer-Verlag Berlin Heidelberg


Wang L.,Nanjing Agricultural University | Ma H.,Nanjing Agricultural University | Song L.,Nanjing Agricultural University | Shu Y.,Nanjing Agricultural University | And 2 more authors.
Journal of Proteomics | Year: 2012

High temperature and humidity (HTH) stress during soybean seed development and maturity in the field easily leads seed to pre-harvest deterioration. However, how proteins and their involved pathways in developing soybean seed systematically cause deterioration is still not largely understood. To reveal it, we compared the proteome composition of developing seed (R 7 period) of a pre-harvest seed deterioration sensitive soybean cultivar at different HTH stress time points (24, 96 and 168h) with their corresponding controls by 2-DE. 42 protein spots were found to be differentially expressed and successfully identified by MALDI-TOF MS to match 31 diverse protein species. These proteins were involved in 13 cellular responses and metabolic processes including carbohydrate metabolism, signal transduction, protein biosynthesis, photosynthesis, protein folding and assembly, energy pathway, cell rescue and defense, cell cycle, nitrogen metabolism, lipid metabolism, amino acid metabolism, transcription regulation, and secondary metabolite biosynthesis. Based on these proteins' functions and involved pathways, together with ultrastructural, physical and chemical, and metabolomic data, a pre-harvest seed deterioration mechanism was proposed. Such a mechanism allows us to further understand the possible management strategy of cellular activities occurring in the HTH-stressed developing seeds and provides new insights into the HTH stress responses in crop developing seeds. © 2012 Elsevier B.V.


Ma H.,Nanjing Agricultural University | Song L.,Nanjing Agricultural University | Huang Z.,Hunan Agricultural University | Yang Y.,Nanjing Agricultural University | And 5 more authors.
EuPA Open Proteomics | Year: 2014

Salinity stress is one of the major abiotic stresses that limit agricultural yield. To understand salt-responsive protein networks in soybean seedling, the extracted proteins from seedling roots of two different genotypes (Lee 68 and Jackson) were analyzed under salt stress by two-dimensional polyacrylamide gel electrophoresis. Sixty-eight differentially expressed proteins were detected and identified. The identified proteins were involved in 13 metabolic pathways and cellular processes. Proteins correlated to brassinosteroid and gilbberellin signalings were significantly increased only in the genotype Lee 68 under salt stress; abscisic acid content was positively correlated with this genotype; proteins that can be correlated to Ca2+ signaling were more strongly enhanced by salt stress in the seedling roots of genotype Lee 68 than in those of genotype Jackson; moreover, genotype Lee 68 had stronger capability of reactive oxygen species scavenging and cell K+/Na+ homeostasis maintaining in seedling roots than genotype Jackson under salt stress. Since the genotype Lee 68 has been described in literature as being tolerant and Jackson as sensitive, we hypothesize that these major differences in the genotype Lee 68 might contribute to salt tolerance. Combined with our previous comparative proteomics analysis on seedling leaves, the similarities and differences between the salt-responsive protein networks found in the seedling leaves and roots of both the genotypes were discussed. Such a result will be helpful in breeding of salt-tolerant soybean cultivars. © 2014 The Authors.


Tian X.,Nanjing Agricultural University | Liu Y.,Hebei University of Engineering | Huang Z.,Hunan Agricultural University | Duan H.,Nanjing Agricultural University | And 5 more authors.
Molecular Biology Reports | Year: 2015

Cold stress adversely affects the growth and development of seedling of spring soybean. Revealing responses in seedling to cold stress at proteomic level will help us to breed cold-tolerant spring soybean cultivars. In this study, to understand the responses, a proteomic analysis on the leaves of seedlings of one cold-tolerant soybean cultivar and one cold-sensitive soybean cultivar at 5 °C for different times (12 and 24 h) was performed, with some proteomic results being further validated by physiological and biochemical analysis. Our results showed that 57 protein spots were found to be significantly changed in abundance and identified by MALDI-TOF/TOF MS. All the identified proteins were found to be involved in 13 metabolic pathways and cellular processes, including photosynthesis, protein folding and assembly, cell rescue and defense, cytoskeletal proteins, transcription and translation regulation, amino acid and nitrogen metabolism, protein degradation, storage proteins, signal transduction, carbohydrate metabolism, lipid metabolism, energy metabolism, and unknown. Based on the majority of the identified cold-responsive proteins, the effect of cold stress on seedling leaves of the two spring soybean cultivars was discussed. The reason that soybean cv. Guliqing is more cold-tolerant than soybean cv. Nannong 513 was due to its more protein, lipid and polyamine biosynthesis, more effective sulfur-containing metabolite recycling, and higher photosynthetic rate, as well as less ROS production and lower protein proteolysis and energy depletion under cold stress. Such a result will provide more insights into cold stress responses and for further dissection of cold tolerance mechanisms in spring soybean. © 2014, Springer Science+Business Media Dordrecht.


Ma H.,Nanjing Agricultural University | Song L.,Nanjing Agricultural University | Shu Y.,Nanjing Agricultural University | Wang S.,Nanjing Agricultural University | And 4 more authors.
Journal of Proteomics | Year: 2012

Salinity is one of the major environmental constraints limiting yield of crop plants in many semi-arid and arid regions around the world. To understand responses in soybean seedling to salt stress at proteomic level, the extracted proteins from seedling leaves of salt-sensitive genotype Jackson and salt-tolerant genotype Lee 68 under 150. mM NaCl stress for 1, 12, 72 and 144. h, respectively, were analyzed by 2-DE. Approximately 800 protein spots were detected on 2-DE gels. Among them, 91 were found to be differently expressed, with 78 being successfully identified by MALDI-TOF-TOF. The identified proteins were involved in 14 metabolic pathways and cellular processes. Based on most of the 78 salt-responsive proteins, a salt stress-responsive protein network was proposed. This network consisted of several functional components, including balancing between ROS production and scavenging, accelerated proteolysis and reduced biosynthesis of proteins, impaired photosynthesis, abundant energy supply and enhanced biosynthesis of ethylene. Salt-tolerant genotype Lee 68 possessed the ability of higher ROS scavenging, more abundant energy supply and ethylene production, and stronger photosynthesis than salt-sensitive genotype Jackson under salt stress, which may be the major reasons why it is more salt-tolerant than Jackson. © 2011 Elsevier B.V.


Ma H.,Nanjing Agricultural University | Wang L.,Nanjing Agricultural University | Wang S.,Nanjing Agricultural University | Wei J.,Nanjing Agricultural University | And 2 more authors.
Current Proteomics | Year: 2016

The developing seed of soybean is susceptible to high temperature and humidity stress in the field, resulting in pre-harvest seed deterioration. Some soybean cultivars are found to be resistant to the deterioration. However, the resistance mechanism is not yet understood at molecular level. To understand the resistance mechanism, the extracted proteins from the developing seed (R7 period) of a resistant soybean cultivar Xiangdou No. 3 under HTH stress were analyzed by two dimensional electrophoresis (2-DE). The abundance of 45 protein spots were found to be significantly changed, and they were further analyzed by MALDI-TOF MS. Based on the majority of these identified proteins, together with the metabolomics and physiological and biochemical data, a potential resistance mechanism was proposed, which involved in G protein-mediated and calcium-dependent signaling pathways, as well as ROS, NO, ethylene, and auxin signaling pathways; to increase resistance, the stressed developing seed enhanced its cell ultrastructure stability, ROS scavenging, photorespiratory rate, ammonium recycling, protein folding and assembly and secondary metabolite biosynthesis, whereas reduced its energy depletion. In addition, combined with our previous comparative proteomics analysis with a pre-harvest seed deterioration sensitive soybean cv. Ningzhen No. 1, the similarities and differences in the HTH stress-responsive metabolic pathways and cellular processes in the developing seeds between the two soybean cultivars were discussed. Preharvest seed deterioration resistant and sensitive soybean cultivars were found to adopt some different metabolic pathways and cellular processes to response to HTH stress. Xiangdou No. 3 possessed more stable cell ultrastructure, lower energy depletion, more enhanced protein folding and assembly and higher protein and oil concentration in its developing seed under HTH stress. All these differences might be the major reasons why Xiangdou No. 3 is more resistant to pre-harvest seed deterioration than Ningzhen No. 1. Such a result allows us to further understand how soybean developing seed responds to HTH stress at protein level and help us in breeding of resistant soybean cultivars. © 2015 Bentham Science Publishers

Loading Shanghai Agricultural Academy collaborators
Loading Shanghai Agricultural Academy collaborators