Shanghai AB Sciex Analytical Instrument Trading Co.

Shanghai, China

Shanghai AB Sciex Analytical Instrument Trading Co.

Shanghai, China
SEARCH FILTERS
Time filter
Source Type

Liu M.,Peking University | Liu M.,Shijiazhuang Yiling Pharmaceutical Co. | Zhao S.,Shijiazhuang Yiling Pharmaceutical Co. | Wang Z.,Shijiazhuang Yiling Pharmaceutical Co. | And 6 more authors.
Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences | Year: 2014

Deoxyschizandrin is an active lignin ingredient originating from Schisandra chinensis (Turcz.) Baill or Schisandrae Sphenantherae Fructus. In the present study, a novel and efficient strategy was developed for the in vivo screening and identification of deoxyschizandrin metabolites using ultra high performance liquid chromatography combined with triple TOF mass spectrometry (UPLC-TOF/MS/MS). This strategy was characterized by the following: a novel and unique multiple mass defect filter (MMDF) combined with an on-line data acquisition method that is dependent on dynamic background subtraction (DBS) was developed to trace all of the probable metabolites of deoxyschizandrin. The MMDF and DBS methods could trigger an IDA scan for the low-level metabolites that are masked by background noise and endogenous components. A combination of data processing methods including extracted ion chromatography (XIC), mass defect filtering (MDF), product ion filtering (PIF) and neutral loss filtering (NLF) were employed to identify the metabolites of deoxyschizandrin. Next, the structures of the metabolites were elucidated based on an accurate mass measurement, the fragmentation patterns of the parent drug and relevant drug bio-transformation knowledge. Finally, an important parameter Clog. P was used to estimate the retention time of isomers. Based on the proposed strategy, 51 metabolites (including 49 phase I and 2 phase II metabolites) were identified in rats after the oral administration of deoxyschizandrin. Among these metabolites, 41 metabolites were characterized in the rat urine, and 28 metabolites were identified in the rat bile. The results indicated that oxidization was the main metabolic pathway and that the methoxy group and the biphenyl cyclooctene were the metabolic sites. Conjugation with sulfate and cysteine groups produced two phase-II metabolites. This study firstly reported the description of deoxyschizandrin metabolism in vivo. This study provided a practical strategy for rapidly screening and identifying metabolites, and this methodology can be widely applied for the structural characterization of the metabolites of other compounds. © 2013 Elsevier B.V.


Fang H.,Peking Union Medical College | Yu S.,Peking Union Medical College | Cheng Q.,Peking Union Medical College | Cheng X.,Peking Union Medical College | And 5 more authors.
Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences | Year: 2016

Vitamin D plays important roles in skeletal metabolism and many other diseases, including chronic renal failure, hypoparathyroidism, sarcoidosis and rickets. 1α,25-dihydroxy vitamin D (1α,25(OH)2D), the active form of vitamin D, exhibits an extremely low serum concentration, which makes its quantification very challenging. High performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) is considered to be the "gold standard" for the determination of these chemicals, which are found in low concentrations in the serum, but conventionally, it needs tedious sample pretreatment procedures, such as solid phase extraction and derivatization. Herein, we describe a simple and rapid HPLC-MS/MS method for the simultaneous quantification of 1α,25-dihydroxy vitamin D3 (1α,25(OH)2D3) and 1α,25-dihydroxy vitamin D2 (1α,25(OH)2D2). The analytes were extracted from the matrix by liquid-liquid extraction, centrifuged to dryness and reconstituted with 75% methanol. Lithium acetate was employed to improve the ionization efficiency of 1α,25(OH)2D. The assay was sensitive with a low limit of quantitation of 10.0 pg/mL for both 1α,25(OH)2D3 and 1α,25(OH)2D2 using a 0.5 mL sample aliquot. Linearity was obtained over the range of 10.0 pg/mL to 500 pg/mL. Both the inter-assay and intra-assay precisions were <15%, and the analytical recoveries were within 100 ± 5%. The performance evaluation of this assay demonstrated that it was a practical, sensitive and specific method for measuring the serum 1α,25(OH)2D3 and 1α,25(OH)2D2 concentrations. © 2016 Elsevier B.V.


Liu X.,Nanjing University | Liu X.,China Medicine Corporation | Liu X.,Cleveland State University | Wang X.-L.,Nanjing University | And 11 more authors.
Journal of Ethnopharmacology | Year: 2014

Ethnopharmacological relevance Da-Huang-Fu-Zi-Tang (DHFZT) is a crucial TCM formula commonly used for the treatment of acute pancreatitis in Chinese clinical application. Our previous work found that DHFZT could act against pancreatic injury in rats with severe acute pancreatitis (SAP). The goal of this paper was to study the underlying correlations between the chemical spectra and the protective effect of DHFZT on pancreatic acinar cell to reveal the real bioactive compounds in DHFZT. Materials and methods The fingerprint chromatograms of rat serum after oral administration of DHFZT were established by UHPLC-ESI-Q-TOF-MS technique. At the same time, the model of anti-acute pancreatitis on cells was established by adding 10-7 mol/L cerulein to AR42J cell line, and the protective effects of the serum on pancreatic acinar cell from injury was evaluated by detecting the efficacy of amylase. Then, the spectrum-effect relationships between UHPLC fingerprints and anti-acute pancreatitis activities were evaluated using canonical correlation analysis (CCA) statistical method. The chromatogram separation was performed on a C 18 reversed phase UHPLC column (2.1 mm×100 mm, 3.5 μm, Agilent), the column temperature was set at 35 °C. The mobile phase consisted of 0.1% formic acid and acetonitrile with gradient elution. The serum samples were analyzed both in negative and positive ion mode. The mother and productive ions were scanned within the mass range of m/z 100-1200 and 50-1200, respectively. A thorough analysis of a great deal of information of the constituents in the rat serum was undertaken. The structure identification of the detected compounds was achieved by using high resolution MS values as well as the MS/MS fragments. Results Eighteen peaks in rat serum after oral administration of DHFZT were detected within only 30 min recorded chromatograms. The structure of the 18 compounds were then given out, of which 10 were the original form of compounds absorbed from DHFZT, 8 were the metabolites of the compounds existed in rat serum. According to the CCA results, talatisamine, rhein glucoside, rhein isomer methylation, hypaconine, hydroxyl-chrysophanol, emodin glucuronide conjugation, and chrysophanol glucuronide conjugation were finally found to be the main anti-acute pancreatitis components in DHFZT. Conclusions The model presented in this paper successfully discovered the spectrum-effect relationships of DHFZT, which showed a representative way to discover the primary active ingredients from the complicated herbal drugs. © 2014 Elsevier Ireland Ltd.


PubMed | Shanghai AB Sciex Analytical Instrument Trading Co. and Peking Union Medical College
Type: | Journal: Journal of chromatography. B, Analytical technologies in the biomedical and life sciences | Year: 2016

Vitamin D plays important roles in skeletal metabolism and many other diseases, including chronic renal failure, hypoparathyroidism, sarcoidosis and rickets. 1,25-dihydroxy vitamin D (1,25(OH)2D), the active form of vitamin D, exhibits an extremely low serum concentration, which makes its quantification very challenging. High performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) is considered to be the gold standard for the determination of these chemicals, which are found in low concentrations in the serum, but conventionally, it needs tedious sample pretreatment procedures, such as solid phase extraction and derivatization. Herein, we describe a simple and rapid HPLC-MS/MS method for the simultaneous quantification of 1,25-dihydroxy vitamin D3 (1,25(OH)2D3) and 1,25-dihydroxy vitamin D2 (1,25(OH)2D2). The analytes were extracted from the matrix by liquid-liquid extraction, centrifuged to dryness and reconstituted with 75% methanol. Lithium acetate was employed to improve the ionization efficiency of 1,25(OH)2D. The assay was sensitive with a low limit of quantitation of 10.0pg/mL for both 1,25(OH)2D3 and 1,25(OH)2D2 using a 0.5mL sample aliquot. Linearity was obtained over the range of 10.0pg/mL to 500pg/mL. Both the inter-assay and intra-assay precisions were <15%, and the analytical recoveries were within 1005%. The performance evaluation of this assay demonstrated that it was a practical, sensitive and specific method for measuring the serum 1,25(OH)2D3 and 1,25(OH)2D2 concentrations.


PubMed | Chinese Academy of Sciences, Tianjin Institute of Pharmaceutical Research, Peking Union Medical College, Tianjin University and 2 more.
Type: | Journal: Journal of chromatography. B, Analytical technologies in the biomedical and life sciences | Year: 2016

Bentysrepinine (Y101), a derivative of repensine (a compound isolated from Dichondrarepens Forst), is a novel phenyalanine dipeptide inhibiting DNA-HBV and cccDNA activities and is currently under development for the treatment of hepatitis B virus (HBV)-infected hepatitis. Our previous study implied that there might be an existence of extensive metabolism of Y101 in rats. Therefore, it is necessary to perform metabolic profiling study to further evaluate its safety and drug-like properties. In this study, the metabolism of Y101 in rats was investigated by a convincible five-step strategy to characterize metabolites in plasma and that excreted into urine, bile and feces. The five-step strategy was realized by using an combined workflow on two different MS platforms, including various scan modes of liquid chromatography with hybrid quadruple-linear ion trap mass spectrometry (LC-QTRAP-MS/MS) and various post-acquiring data mining tools of liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (LC-QTOF-MS/MS). QTOF MS/MS was employed as a powerful complementary tool to enable high confidence of metabolites identification using its functions of accurate MS and MS/MS fragmentation. As a result, a total of 30 metabolites were detected, including 25 phase I and 5 phase II metabolites. Among them, four primary metabolites (M6-M9) were further identified by comparing with the authentic standards chemically synthesized. The possible metabolic pathways of Y101 in rats were proposed to be amide hydrolysis, monohydroxylation, dihydroxylation, N-oxidation, demethylation, methylation, glucosidation and glucuronidation. This is the first study of the metabolism of Y101 in rats. The five-step strategy was successfully used to systematically characterize metabolites of Y101 in rats, and it would be generally applied for metabolite identification of new drug candidate.


PubMed | Shanghai AB Sciex Analytical Instrument Trading Co., Nanjing University of Chinese Medicine, Cleveland State University and China Medicine Corporation
Type: Journal Article | Journal: Journal of ethnopharmacology | Year: 2014

Da-Huang-Fu-Zi-Tang (DHFZT) is a crucial TCM formula commonly used for the treatment of acute pancreatitis in Chinese clinical application. Our previous work found that DHFZT could act against pancreatic injury in rats with severe acute pancreatitis (SAP). The goal of this paper was to study the underlying correlations between the chemical spectra and the protective effect of DHFZT on pancreatic acinar cell to reveal the real bioactive compounds in DHFZT.The fingerprint chromatograms of rat serum after oral administration of DHFZT were established by UHPLC-ESI-Q-TOF-MS technique. At the same time, the model of anti-acute pancreatitis on cells was established by adding 10(-7) mol/L cerulein to AR42J cell line, and the protective effects of the serum on pancreatic acinar cell from injury was evaluated by detecting the efficacy of amylase. Then, the spectrum-effect relationships between UHPLC fingerprints and anti-acute pancreatitis activities were evaluated using canonical correlation analysis (CCA) statistical method. The chromatogram separation was performed on a C18 reversed phase UHPLC column (2.1 mm 100 mm, 3.5 m, Agilent), the column temperature was set at 35C. The mobile phase consisted of 0.1% formic acid and acetonitrile with gradient elution. The serum samples were analyzed both in negative and positive ion mode. The mother and productive ions were scanned within the mass range of m/z 100-1200 and 50-1200, respectively. A thorough analysis of a great deal of information of the constituents in the rat serum was undertaken. The structure identification of the detected compounds was achieved by using high resolution MS values as well as the MS/MS fragments.Eighteen peaks in rat serum after oral administration of DHFZT were detected within only 30 min recorded chromatograms. The structure of the 18 compounds were then given out, of which 10 were the original form of compounds absorbed from DHFZT, 8 were the metabolites of the compounds existed in rat serum. According to the CCA results, talatisamine, rhein glucoside, rhein isomer methylation, hypaconine, hydroxyl-chrysophanol, emodin glucuronide conjugation, and chrysophanol glucuronide conjugation were finally found to be the main anti-acute pancreatitis components in DHFZT.The model presented in this paper successfully discovered the spectrum-effect relationships of DHFZT, which showed a representative way to discover the primary active ingredients from the complicated herbal drugs.


PubMed | Nanjing University, Liaoning Institute for Food and Drug Control, Shanghai AB Sciex Analytical Instrument Trading Co. and China Medicine Corporation
Type: | Journal: Journal of chromatography. B, Analytical technologies in the biomedical and life sciences | Year: 2015

Fangji Huangqi Tang (FHT) is a classical formula widely used in Chinese clinical application. In this paper, a novel and advanced strategy has been developed for the multiple constituent identification of FHT in rats, which was basing on an ultra-high performance liquid chromatography equipped with electrospray ionization quadrupole time-of-flight mass spectrometry (UHPLC-ESI-Q-TOF-MS) method combined with dynamic background subtract (DBS) data acquisition and enhance peak list (EPL) data processing techniques. Firstly, a total of 58 potential bioactive compounds including alkaloids, flavonoids, saponins, saccharides and terpenoids were detected from FHT. Their chemical structures were identified by comparing the retention time and mass spectrometry data, as well as retrieving the reference literatures. Based on the same instrumental conditions, 33 compounds were found in rat serum after oral administration of FHT. After a considerate comparison with the former chemical identification results of FHT, 33 compounds were found, which turned out to be 8 original compounds of FHT as well as 25 metabolites, including 20 phase I and 5 phase II metabolites. The results indicated that the metabolic reactions included hydroxylation, hydrogenation, demethylation, tarine conjugation and acetylation. This study firstly reported the metabolism description of fangchinoline and tetrandrine in vivo, which could be very useful for further pharmacological and clinical studies of FHT. Meanwhile, it provided a practical strategy for rapid screening and identifying of multiple constituents and their metabolites of complex traditional Chinese medicine in biological matrix.


Liu J.-X.,CAS Beijing National Laboratory for Molecular | Zhang Y.-W.,CAS Beijing National Laboratory for Molecular | Yuan F.,CAS Beijing National Laboratory for Molecular | Chen H.-X.,Shanghai AB Sciex Analytical Instrument Trading Co. | Zhang X.-X.,CAS Beijing National Laboratory for Molecular
Electrophoresis | Year: 2014

A lab prototype CE-nanospray-MS platform with a high sensitivity porous sprayer was successfully applied in differential identification of Rhizoma coptidis in this paper. To obtain a stable and reliable nanospray, detailed optimizations about emitter geometry, buffer composition, emitter position, and spray voltage, as well as emitter cleanliness were discussed. Results showed that the reproducibility and sensitivity for separations of alkaloid standards were satisfactory using CE-nanospray-MS, which were also compared to ultra-HPLC (UHPLC)-MS. Their signal responds were at the same order of magnitude (intensities: 0.8 - 1.5 × 108 vs. 3.8 - 6.2 × 108), even though a 2 nL injection for CE was 2500-fold lower than UHPLC (5 μL injection). The absolute LOD results of CE-MS showed a remarkable superiority (18-24 fg), equal to 1000-fold lower than that of UHPLC-MS. Principal component analysis (PCA) of adulterated R. coptidis showed that this protocol had the ability to profile and qualify complex herb medicines, which also created a great potential for evaluation and qualification of rare and valuable Chinese medicines in future. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.


Yuan F.,CAS Beijing National Laboratory for Molecular | Zhang X.-H.,CAS Beijing National Laboratory for Molecular | Nie J.,CAS Beijing National Laboratory for Molecular | Chen H.-X.,Shanghai AB Sciex Analytical Instrument Trading Co. | And 2 more authors.
Chemical Communications | Year: 2016

A newly developed sheathless interface for capillary electrophoresis-mass spectrometry, using a porous tip sprayer, was first applied for highly sensitive determination of cytosine modifications. The system performed well in identification and quantification of both 5-methylcytosine and 5-hydroxymethylcytosine using only 125 pg (∼20 cells) genomic DNA samples. © The Royal Society of Chemistry 2016.

Loading Shanghai AB Sciex Analytical Instrument Trading Co. collaborators
Loading Shanghai AB Sciex Analytical Instrument Trading Co. collaborators