Entity

Time filter

Source Type


Sheng Q.K.,Shandong Academy of Agricultural Sciences | Sheng Q.K.,Shandong Provincial Key Laboratory of Animal Disease Control and Breeding | Zhou K.F.,Shandong Chief Animal Husbandry and Veterinarian Station | Hu H.M.,Shandong Academy of Agricultural Sciences | And 3 more authors.
Asian-Australasian Journal of Animal Sciences | Year: 2016

This study investigated the effect of Bacillus subtilis (B. subtilis) natto on meat quality and skatole in TOPIGS pigs. Sixty TOPIGS pigs were randomly assigned to 3 groups (including 5 pens per group, with 4 pigs in each pen) and fed with basic diet (control group), basic diet plus 0.1% B. subtilis natto (B group), and basic diet plus 0.1% B. subtilis natto plus 0.1% B. coagulans (BB group), respectively. All pigs were sacrificed at 100 kg. Growth performance, meat quality, serum parameters and oxidation status in the three groups were assessed and compared. Most parameters regarding growth performance and meat quality were not significantly different among the three groups. However, compared with the control group, meat pH24, fat and feces skatole and the content of Escherichia coli (E. Coli), Clostridium, NH3-N were significantly reduced in the B and BB groups, while serum total cholesterol, high density lipoprotein, the levels of liver P450, CYP2A6, and CYP2E1, total antioxidant capability (T-AOC) and glutathione peroxidase and Lactobacilli in feces were significantly increased in the B and BB groups. Further, the combined supplementation of B. subtilis natto and B. coagulans showed more significant effects on the parameters above compared with B. subtilis, and Clostridium, and NH3-N. Our results indicate that the supplementation of pig feed with B. subtilis natto significantly improves meat quality and flavor, while its combination with B. coagulans enhanced these effects. Copyright © 2016 by Asian-Australasian Journal of Animal Sciences. Source


Sheng Q.K.,Shandong Academy of Agricultural Sciences | Sheng Q.K.,Shandong Provincial Key Laboratory of Animal Disease Control and Breeding | Yang Z.J.,Shandong Meishida Agriculture and Husbandry Technology | Zhao H.B.,Shandong Academy of Agricultural Sciences | And 2 more authors.
Asian-Australasian Journal of Animal Sciences | Year: 2015

The effects of daily dietary Bacillus subtilis (Bs), and adding L-tryptophan, fructan, or casein to fecal fermentation broths were investigated as means to reduce the production of noxious gas during manure fermentation caused by ammonia, hydrogen sulfide (H2S), and 3-methylindole (skatole). Eighty swine (50.0±0.5 kg) were equally apportioned to an experimental group given Bs in daily feed, or a control group without Bs. After 6 weeks, fresh manure was collected from both groups for fermentation studies using a 3×3 orthogonal array, in which tryptophan, casein, and fructan were added at various concentrations. After fermentation, the ammonia, H2S, L-tryptophan, skatole, and microflora were measured. In both groups, L-tryptophan was the principle additive increasing skatole production, with significant correlation (r = 0.9992). L-tryptophan had no effect on the production of ammonia, H2S, or skatole in animals fed Bs. In both groups, fructan was the principle additive that reduced H2S production (r = 0.9981). Fructan and Bs significantly interacted in H2S production (p = 0.014). Casein was the principle additive affecting the concentration of ammonia, only in the control group. Casein and Bs significantly interacted in ammonia production (p = 0.039). The predominant bacteria were Bacillus spp. CWBI B1434 (26%) in the control group, and Streptococcus alactolyticus AF201899 (36%) in the experimental group. In summary, daily dietary Bs reduced ammonia production during fecal fermentation. Lessening L-tryptophan and increasing fructan in the fermentation broth reduced skatole and H2S. Copyright © 2015 by Asian-Australasian Journal of Animal Sciences. Source


Sheng Q.K.,Shandong Academy of Agricultural Sciences | Sheng Q.K.,Shandong Provincial Key Laboratory of Animal Disease Control and Breeding | Yang L.Q.,Shandong Provincial Si Wei Chemical Safety Evaluation Center | Zhao H.B.,Shandong Academy of Agricultural Sciences | And 4 more authors.
Asian-Australasian Journal of Animal Sciences | Year: 2013

This study investigated the effects of low levels of water-soluble pentosans (WSP), alkaline-extractable pentosans (AEP), and xylanase on the growth and organ development of broiler chicks. Three hundred and fifty 1-d-old female broiler chicks were randomly allocated into seven experimental groups of five pen replicates, with ten chicks per replicate. The control group consumed a corn-soybean meal-based diet. Six dietary treatment groups consumed the basal diet supplemented with one of the following: WSP at 50 mg/kg (WSP50) or 100 mg/kg (WSP100); AEP at 50 mg/kg (AEP50) or 100 mg/kg (AEP100); or xylanase at 3 mg/kg (Xase3) or 6 mg/kg (Xase6). Data including the body weight, digestive organ weights, gut length, rectal digesta viscosity, and gut microflora and pH were collected on d 5, 10, and 15. When compared to the control group, WSP50 promoted body weight gain and organ growth throughout the study, calculated as 3-d averages (p<0.05). WSP100 increased weight gain and enhanced organ development (proventriculus, gizzard, and gut) on d 10 (p<0.05), but the 3-d averages were not different from the control group except for the weight of gizzard. Both Xase3 and Xase6 increased the 3-d average weight gain and the growth of the gizzard (p<0.05). WSP50 increased the digesta viscosity compared to Xase3 on d 10 and 15 (p<0.05). WSP50, Xase3, and Xase6 increased the concentration of Lactobacillus in the rectum when compared to the control group (p<0.05), but only Xase3 lowered the digesta pH in the ileum and cecum on d 10 and 15. AEP had minimal influence on the growth and organ development of broilers. The results showed that low levels of WSP, AEP, and xylanase had different effects and underlying mechanisms on the growth and organ development of broiler chicks. WSP50 could increase the growth performance of broilers fed a corn-soybean meal-based diet. © 2013 by Asian-Australasian Journal of Animal Sciences. Source

Discover hidden collaborations