Time filter

Source Type

Li C.,Shandong Gout Clinical Medical Center | Li C.,Qingdao University | Li Z.,Shanghai JiaoTong University | Liu S.,Shandong Gout Clinical Medical Center | And 76 more authors.
Nature Communications | Year: 2015

Gout is one of the most common types of inflammatory arthritis, caused by the deposition of monosodium urate crystals in and around the joints. Previous genome-wide association studies (GWASs) have identified many genetic loci associated with raised serum urate concentrations. However, hyperuricemia alone is not sufficient for the development of gout arthritis. Here we conduct a multistage GWAS in Han Chinese using 4,275 male gout patients and 6,272 normal male controls (1,255 cases and 1,848 controls were genome-wide genotyped), with an additional 1,644 hyperuricemic controls. We discover three new risk loci, 17q23.2 (rs11653176, P=1.36 × 10-13, BCAS3), 9p24.2 (rs12236871, P=1.48 × 10-10, RFX3) and 11p15.5 (rs179785, P=1.28 × 10-8, KCNQ1), which contain inflammatory candidate genes. Our results suggest that these loci are most likely related to the progression from hyperuricemia to inflammatory gout, which will provide new insights into the pathogenesis of gout arthritis. © 2015 Macmillan Publishers Limited. All rights reserved.

Liu Z.,Qingdao University | Liu Z.,Shandong Gout Clinical Medical Center | Liu Z.,Key Laboratory of Hypertension | Chen T.,Qingdao University | And 10 more authors.
Stem Cells International | Year: 2016

Epidemiological studies have identified hyperuricemia as an independent risk factor for cardiovascular disease. However, the mechanism whereby hyperuricemia causes atherosclerosis remains unclear. The objective of the study was to establish a new rat model of hyperuricemia-induced atherosclerosis. Wistar-Kyoto rats were randomly allocated to either a normal diet (ND), high-fat diet (HFD), or high-adenine diet (HAD), followed by sacrifice 4, 8, or 12 weeks later. Serum uric acid and lipid levels were analyzed, pathologic changes in the aorta were observed by hematoxylin and eosin staining, and mRNA expression was evaluated by quantitative real-time polymerase chain reaction. Serum uric acid and TC were significantly increased in the HAD group at 4 weeks compared with the ND group, but there was no significant difference in serum uric acid between the ND and HFD groups. Aorta calcification occurred earlier and was more severe in the HAD group, compared with the HFD group. Proliferating cell nuclear antigen, monocyte chemotactic factor-1, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1 mRNA levels were increased in the HFD and HAD groups compared with the ND group. This new animal model will be a useful tool for investigating the mechanisms responsible for hyperuricemia-induced atherosclerosis. © 2016 Zhen Liu et al.

Discover hidden collaborations