Tai'an, China

Shandong Agricultural University , established in 1906, is a comprehensive university in Shandong, China. Several academicians from the Chinese Academy of science and the Chinese Academy of Engineering are graduates from SDAU. Wikipedia.

Time filter

Source Type

Feng W.,Shandong Agricultural University | Tian J.,Shandong Agricultural University | Zhao P.,University of Jinan
Automatica | Year: 2011

In this paper, for a class of switched stochastic (SS) systems, the moment stability (M-S) and sample path stability (SP-S) are investigated, respectively, and there are two main contributions. First, based on accurate estimations for the powers of solution of a special nonswitched stochastic (nSS) system, by employing the concepts of a Lyapunov function and describing the switching laws with the average dwell-time and the subsystems, three sufficiency theorems of p-th M-S are given for the SS systems. Then, for the SP-S of such systems, based on the results of p-th M-S, two sufficiency theorems are obtained for p>2 and p=2, respectively. © 2010 Published by Elsevier Ltd. All rights reserved.

Leymus mollis, a perennial allotetraploid (2n = 4x = 28), known as American dune grass, is a wild relative of wheat that could be useful for cultivar improvement. Shannong0096, developed from interspecific hybridization between common wheat cv. Yannong15 and L. mollis, was analyzed with cytological procedures, genomic in situ hybridization, stripe-rust resistance screening and molecular marker analysis. We found that Shannong0096 has 42 chromosomes in the root-tip cells at mitotic metaphase and 21 bivalents in the pollen mother cells at meiotic metaphase I, demonstrating cytogenetic stability. Genomic in situ hybridization probed with total genomic DNA from L. mollis gave strong hybridization signals in the distal region of two wheat chromosome arms. A single dominant Yr gene, derived from L. mollis and temporarily designated as YrSn0096, was found on the long arm of chromosome 4A of Shannong0096. YrSn0096 should be a novel Yr gene because none of the previously reported Yr genes on chromosome 4A are related to L. mollis. This gene was found to be closely linked to the loci Xbarc236 and Xksum134 with genetic distances of 5.0 and 4.8 cM, respectively. Based on data from 267 F(2) plants of Yannong15/Huixianhong, the linkage map of YrSn0096, using the two molecular markers, was established in the order Xbarc236-YrSn0096-Xksum134. Shannong0096 appeared to be a unique wheat-L. mollis translocation with cryptic alien introgression. Cytogenetic stability, a high level of stripe-rust resistance, the common wheat background, and other positive agronomic traits make it a desirable donor for introducing novel alien resistance genes in wheat breeding programs, with the advantage of molecular markers that can be used to confirm introgression.

Su Y.-H.,Shandong Agricultural University | Liu Y.-B.,Shandong Agricultural University | Zhang X.-S.,Shandong Agricultural University
Molecular Plant | Year: 2011

Plant hormones regulate many aspects of plant growth and development. Both auxin and cytokinin have been known for a long time to act either synergistically or antagonistically to control several significant developmental processes, such as the formation and maintenance of meristem. Over the past few years, exciting progress has been made to reveal the molecular mechanisms underlying the auxin-cytokinin action and interaction. In this review, we shall briefly discuss the major progress made in auxin and cytokinin biosynthesis, auxin transport, and auxin and cytokinin signaling. The frameworks for the complicated interaction of these two hormones in the control of shoot apical meristem and root apical meristem formation as well as their roles in in vitro organ regeneration are the major focus of this review. © 2011 The Author.

The interplay between maturation-promoting factor (MPF), mitogen-activated protein kinase (MAPK) and Rho GTPase during actin-myosin interactions has yet to be determined. The mechanism by which microtubule disrupters induce the formation of ooplasmic protrusion during chemical-assisted enucleation of mammalian oocytes is unknown. Moreover, a suitable model is urgently needed for the study of cytokinesis. We have established a model of chemical-induced cytokinesis and have studied the signaling events leading to cytokinesis using this model. The results suggested that microtubule inhibitors activated MPF, which induced actomyosin assembly (formation of ooplasmic protrusion) by activating RhoA and thus MAPK. While MAPK controlled actin recruitment on its own, MPF promoted myosin enrichment by activating RhoA and MAPK. A further chemical treatment of oocytes with protrusions induced constriction of the actomyosin ring by inactivating MPF while activating RhoA. In conclusion, the present data suggested that the assembly and contraction of the actomyosin ring were two separable steps: while an increase in MPF activity promoted the assembly through RhoA-mediated activation of MAPK, a decrease in MPF activity triggered contraction of the ring by activating RhoA.

Jiang C.,Shandong Agricultural University
Developmental and comparative immunology | Year: 2013

Porcine reproductive and respiratory syndrome (PRRS) has caused severe economic loss in most swine-producing countries. The resistance to PRRS virus (PRRSV) infection varies among pig breeds and lines. In this study, we found that the Chinese Dapulian pigs (DPL) were more resistant to PRRSV than commercial Duroc×Landrace×Yorkshire (DLY) crossbred pigs in that lower rectal temperature and lower PRRSV copy number in the serum were detected in the former. Analysis of the mRNA expression of five PRRSV mediator genes (SIGLEC1, NMMHC-IIA, CD163, VIM and HSPG2) in the lung tissues indicated differences in expression between DLY and DPL pigs. In uninfected porcine lung tissues, the levels of SIGLEC1, NMMHC-IIA, CD163 and VIM genes were significantly higher in DLY than in DPL pigs (P<0.05); in PRRSV-infected pigs, the expression levels of NMMHC-IIA and CD163 mRNA were significantly higher in DPL pigs compared to uninfected ones (P<0.05), whereas these levels were not different in DLY pigs or between infected DPL and DLY pigs. Thus, the different expression of PRRSV mediator genes is likely related to pig resistance to PRRSV. Copyright © 2012 Elsevier Ltd. All rights reserved.

A universal photoelectrochemical (PEC) sensing platform was fabricated based on the composition of protoporphyrin IX (PPIX), tungsten trioxide (WO3) and reduced graphene oxide (rGO) on indium tin oxide (ITO) electrode for detecting cysteine in aqueous solution. The rGO layer was not only providing bridges for the ITO electrode to anchor tightly with the WO3 nanostructures, but behaved as an electron transfer medium to enhance the electron transport from the conduction band (CB) of WO3. Furthermore, the strong absorption coefficient of porphyrin adsorbed onto WO3 nanoplates by bidentate binding could significantly improve the photocurrent density and slow charge recombination kinetics through the ultrafast electron injection. The SEM, XRD, and DRS were employed to characterize the prepared nanomaterials and modified-ITO electrodes. The results showed that the PPIX-WO3-rGO/ITO electrode could render the capability of absorbing a broad UV-vis light and displayed excellent photocurrent response in 0.1M pH 7.0 PBS with excitation wavelength at 380 nm, which could be notably improved upon addition of cysteine at 0.3 V. Based on the enhanced photocurrent signal, a novel method for PEC detection of cysteine was developed with a linear range of 0.1 to 100 μM in 0.1M PBS (pH 7.0). The detection limit was 25 nM (3σ). And higher stability and selectivity were obtained. The novel strategy could provide a fast and sensitive method for cysteine analysis. Copyright © 2013 Elsevier B.V. All rights reserved.

Low temperature is one of the major abiotic stresses limiting the productivity and geographical distribution of many important crops. To identify proteins associated with chilling stress in Nicotiana tabacum cv. bright yellow-2 (BY-2) cell suspension culture, we utilized a proteomic approach with two-dimensional electrophoresis to compare proteins from samples of treated with or without chilling treatment at 4 °C. One protein specifically more abundant in chilling treated sample was identified and designated as NtLEA7-3. Rapid amplification of cDNA ends gave rise to a full-length NtLEA7-3 cDNA with a complete open reading frame of 1267 bp, encoding a 322 amino acid polypeptide. Homology search and sequence multi-alignment demonstrated that the deduced NtLEA7-3 protein sequence shared a high identity with LEA-like proteins from other plants. Subcellular localization analysis indicated that the NtLEA7-3 was localized exclusively in the nucleus. When the gene was overexpressed in bright yellow-2 cells, the transgenic bright yellow-2 cells show more resistant to chilling stress than the wild-type cells. In addition, transgenic Arabidopsis plants overexpressing the NtLEA7-3 are much more resistant to cold, drought, and salt stresses. Interestingly, the expression of NtLEA7-3 in tobacco was not tissue-specific and induced by chilling, drought and salt stresses. All of these, taken together, suggest that NtLEA7-3 is worthwhile to elucidate the contribution of the proteins to the tolerance mechanism to chilling stress, and can be considered as a potential target for crop genetic improvement in the future.

Su Y.H.,Shandong Agricultural University | Zhang X.S.,Shandong Agricultural University
Current Topics in Developmental Biology | Year: 2014

Plant cells have a profound capacity to regenerate their full array of tissues from already differentiated organs, as best demonstrated in in vitro regeneration systems. Although critical breakthroughs in in vitro organogenesis have outlined the role of hormones and their interactions in determination of cultured plant cell developmental fates, the underlying molecular mechanisms are still largely unexplored. Investigations have recently been empowered by the identification of key genes that function in regeneration, involved in hormonal biosynthesis, transport, signaling, and hormone interactions. The establishment of differential hormone-responsive patterns in organ regeneration zones is critical for de novo organ initiation. The present review focuses on recent findings providing insights into hormone-regulated plant regeneration at the molecular level and the formation of hormonal-response environments required for de novo regeneration. © 2014 Elsevier Inc.

MicroRNAs (miRNAs) and small interfering RNAs (siRNAs) are short (19-25 nucleotides) non-coding RNA molecules that have large-scale regulatory effects on development and stress responses in plants. Verticillium wilt is a vascular disease in plants caused by the fungal pathogen Verticillium dahliae. The objective of this study is to investigate the transcriptional profile of miRNAs and other small non-coding RNAs in Verticillium-inoculated cotton roots. Four small RNA libraries were constructed from mocked and infected roots of two cotton cultured species which are with different Verticillium wilt tolerance ('Hai-7124', Gossypium barbadense L., a Verticillium-tolerant cultivar, and 'Yi-11', Gossypium hirsutum L. a Verticillium-sensitive cultivar). The length distribution of obtained small RNAs was significantly different between libraries. There were a total of 215 miRNA families identified in the two cotton species. Of them 14 were novel miRNAs. There were >65 families with different expression between libraries. We also identified two trans-acting siRNAs and thousands of endogenous siRNA candidates, and hundred of them exhibited altered expression after inoculation of Verticillium. Interesting, many siRNAs were found with a perfect match with retrotransposon sequences, suggested that retrotransposons maybe one of sources for the generation of plant endogenous siRNAs. The profiling of these miRNAs and other small non-coding RNAs lay the foundation for further understanding of small RNAs function in the regulation of Verticillium defence responses in cotton roots.

Cui F.,Shandong Agricultural University
TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik | Year: 2014

A novel high-density consensus wheat genetic map was obtained based on three related RIL populations, and the important chromosomal regions affecting yield and related traits were specified. A prerequisite for mapping quantitative trait locus (QTL) is to build a genetic linkage map. In this study, three recombinant inbred line populations (represented by WL, WY, and WJ) sharing one common parental line were used for map construction and subsequently for QTL detection of yield-related traits. PCR-based and diversity arrays technology markers were screened in the three populations. The integrated genetic map contains 1,127 marker loci, which span 2,976.75 cM for the whole genome, 985.93 cM for the A genome, 922.16 cM for the B genome, and 1,068.65 cM for the D genome. Phenotypic values were evaluated in four environments for populations WY and WJ, but three environments for population WL. Individual and combined phenotypic values across environments were used for QTL detection. A total of 165 putative additive QTL were identified, 22 of which showed significant additive-by-environment interaction effects. A total of 65 QTL (51.5%) were stable across environments, and 23 of these (35.4%) were common stable QTL that were identified in at least two populations. Notably, QTkw-5B.1, QTkw-6A.2, and QTkw-7B.1 were common major stable QTL in at least two populations, exhibiting 11.28-16.06, 5.64-18.69, and 6.76-21.16% of the phenotypic variance, respectively. Genetic relationships between kernel dimensions and kernel weight and between yield components and yield were evaluated. Moreover, QTL or regions that commonly interact across genetic backgrounds were discussed by comparing the results of the present study with those of previous similar studies. The present study provides useful information for marker-assisted selection in breeding wheat varieties with high yield.

Loading Shandong Agricultural University collaborators
Loading Shandong Agricultural University collaborators