Time filter

Source Type

Woodridge, IL, United States

Cook W.J.,University of Alabama at Birmingham | Galakatos N.,Ciba Geigy Corporation | Galakatos N.,Clarus Ventures | Boyar W.C.,Ciba Geigy Corporation | And 2 more authors.
Acta Crystallographica Section D: Biological Crystallography

The anaphylatoxin C5a is derived from the complement component C5 during activation of the complement cascade. It is an important component in the pathogenesis of a number of inflammatory diseases. NMR structures of human and porcine C5a have been reported; these revealed a four-helix bundle stabilized by three disulfide bonds. The crystal structure of human desArg-C5a has now been determined in two crystal forms. Surprisingly, the protein crystallizes as a dimer and each monomer in the dimer has a three-helix core instead of the four-helix bundle noted in the NMR structure determinations. Furthermore, the N-terminal helices of the two monomers occupy different positions relative to the three-helix core and are completely different from the NMR structures. The physiological significance of these structural differences is unknown. © 2010 International Union of Crystallography Printed in Singapore - all rights reserved. Source

Fanning S.W.,Northern Illinois University | Fanning S.W.,University of Chicago | Walter R.,Shamrock Structures LLC | Horn J.R.,Northern Illinois University
Protein Engineering, Design and Selection

To explore dual-specificity in a small protein interface, we previously generated a 'metal switch' anti-RNase A VHH antibody using a combinatorial histidine library approach. While most metal-binding sites in proteins are found within rigid secondary structure, the engineered VHH antibody (VHHmetal), which contained three new histidine residues, possessed metal-binding residues within the flexible hypervariable loops. Here, crystal structure analysis of the free and bound states of VHHmetal reveals the structural determinants leading to dual-function. Most notably, CDR1 is observed in two distinct conformations when adopting the metal or RNase A bound states. Furthermore, mutagenesis studies revealed that one of the engineered residues, not located in the metal-binding pocket, contributed indirectly to metal recognition, likely through influencing CDR1 conformation. Despite these changes, VHHmetal possesses a relatively minor energetic penalty toward binding the original antigen, RNase A (∼1 kcal/mol), where the engineered gain-of-function metal-binding residues are observed to possess a mix of favorable and unfavorable contributions towards RNase A recognition. Ultimately, the conformationally distinct metal-switch interface architecture reflects the robust, library-based strategy used to produce VHHmetal. These results also suggest that even small protein interfaces, such as VHH, may be structurally and energetically forgiving in adopting novel function, while maintaining original function. © The Author 2014. Published by Oxford University Press. All rights reserved. Source

Dementiev A.,University of Illinois at Chicago | Swanson R.,Shamrock Structures LLC | Roth R.,Shamrock Structures LLC | Isetti G.,University of Illinois at Chicago | And 3 more authors.
Journal of Biological Chemistry

Allosteric conformational changes in antithrombin induced by binding a specific heparin pentasaccharide result in very large increases in the rates of inhibition of factors IXa and Xa but not of thrombin. These are accompanied by CD, fluorescence, and NMR spectroscopic changes. X-ray structures show that heparin binding results in extension of helix D in the region 131-136 with coincident, and possibly coupled, expulsion of the hinge of the reactive center loop. To examine the importance of helix D extension, we have introduced strong helix-promoting mutations in the 131-136 region of antithrombin (YRKAQK to LEEAAE). The resulting variant has endogenous fluorescence indistinguishable from WT antithrombin yet, in the absence of heparin, shows massive enhancements in rates of inhibition of factors IXa and Xa (114- and 110-fold, respectively), but not of thrombin, together with changes in near- and far-UV CD and 1H NMR spectra. Heparin binding gives only ∼3-4-fold further rate enhancement but increases tryptophan fluorescence by -23% without major additional CD or NMR changes. Variants with subsets of these mutations show intermediate activation in the absence of heparin, again with basal fluorescence similar to WT and large increases upon heparin binding. These findings suggest that in WT antithrombin there are two major complementary sources of conformational activation of antithrombin, probably involving altered contacts of side chains of Tyr-131 and Ala-134 with core hydrophobic residues, whereas the reactive center loop hinge expulsion plays only a minor additional role. © 2013 by The American Society for Biochemistry and Molecular Biology, Inc. Source

Discover hidden collaborations