Time filter

Source Type

Li Y.,Southern Medical University | Yan X.,PLA Fourth Military Medical University | Liu J.,PLA Fourth Military Medical University | Li L.,Shaanxi Provincial TCM Hospital | And 3 more authors.
Neurochemistry International | Year: 2014

Although pulsed electromagnetic field (PEMF) exposure has been reported to promote neuronal differentiation, the mechanism is still unclear. Here, we aimed to examine the effects of PEMF exposure on brain-derived neurotrophic factor (Bdnf) mRNA expression and the correlation between the intracellular free calcium concentration ([Ca2+]i) and Bdnf mRNA expression in cultured dorsal root ganglion neurons (DRGNs). Exposure to 50 Hz and 1 mT PEMF for 2 h increased the level of [Ca2+]i and Bdnf mRNA expression, which was found to be mediated by increased [Ca2+] i from Ca2+ influx through L-type voltage-gated calcium channels (VGCCs). However, calcium mobilization was not involved in the increased [Ca2+]i and BDNF expression, indicating that calcium influx was one of the key factors responding to PEMF exposure. Moreover, PD098059, an extracellular signal-regulated kinase (Erk) inhibitor, strongly inhibited PEMF-dependant Erk1/2 activation and BDNF expression, indicating that Erk activation is required for PEMF-induced upregulation of BDNF expression. These findings indicated that PEMF exposure increased BDNF expression in DRGNs by activating Ca2+- and Erk-dependent signaling pathways. © 2014 Elsevier Ltd. All rights reserved.

Liu J.-F.,PLA Fourth Military Medical University | Yan X.-D.,PLA Fourth Military Medical University | Qi L.-S.,PLA Fourth Military Medical University | Li L.,Shaanxi Provincial TCM Hospital | And 3 more authors.
Chemico-Biological Interactions | Year: 2015

One of the most common pathological changes in Alzheimer's disease (AD) brain is the large number of amyloid β (Aβ) peptides accumulating in lesion areas. Ginsenosides are the most active components extracted from ginseng. Ginsenoside Rd (GRd) is a newly discovered saponin that has a stronger pharmacological activity than other ginsenosides, especially in neuroprotection. Here we examined the neuroprotective effects of GRd against neuronal insults induced by Aβ25-35 in primary cultured hippocampal neurons. A 10 μM GRd treatment significantly prevented the loss of hippocampal neurons induced by Aβ25-35. In addition, GRd significantly ameliorated Aβ25-35-induced oxidative stress by decreasing the reactive oxygen species (ROS) production and malondialdehyde (MDA) level, and increasing the levels of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px); which is similar in treatments with 10 μM of probucol (PB) and 100 μM of edaravone (EDA). Moreover, our present study demonstrated that GRd significantly enhanced the expression of Bcl-2 mRNA, and decreased the expressions of Bax mRNA and Cyt c mRNA. GRd also downregulated the protein level of cleaved Caspase-3 compared to controls. These results highlighted the neuroprotective effects of GRd against Aβ25-35-induced oxidative stress and neuronal apoptosis, suggesting that this may be a promising therapeutics against AD. © 2015 Elsevier Ltd. All rights reserved.

Discover hidden collaborations