Time filter

Source Type

Montréal, Canada

Mann A.,PO Box 778 | Reimann C.,Geological Survey of Norway | De Caritat P.,Geoscience Australia | De Caritat P.,Australian National University | And 2 more authors.
Geochemistry: Exploration, Environment, Analysis | Year: 2015

Two thousand one hundred and eight agricultural soils (0–20 cm depth) collected at a density of one sample per 2500 km2 under the auspices of the Geochemical Mapping of Agricultural Soils (GEMAS) project over most of the European continent have been analysed using the Mobile Metal Ion (MMI®) partial extraction technique with ICP-MS finish. For a number of elements, notably Ce, Ni, and Ca, coherent geogenic patterns have been observed which relate to underlying lithology. For Fe and Al, coherent patterns are also observed but the effects of weathering are evident, and provide a mechanism to explain the acidity of soils in high rainfall areas. Individual anomalies, many related to anthropogenic activity (mining, metallurgy, agriculture) have been observed for Ag, Au, Cu, Pb, Cd and Zn. Comparison of the results with aqua regia digestion and the equivalent National Geochemistry Survey of Australia (NGSA) provides insights into weathering processes and the concept of bioavailability. © 2015 AAG/The Geological Society of London.

Mann A.,PO Box 778 | de Caritat P.,Geoscience Australia | Prince P.,SGS Canada
Geochemistry: Exploration, Environment, Analysis | Year: 2012

Catchment outlet sediments (0-10 cm depth, sieved to <2 mm) collected at a very low density over most of the Australian continent have been analysed using the Mobile Metal Ion (MMI®) partial extraction technique. Of the 54 elements determined, eight are generally regarded as essential nutrients for plant growth: Ca, Cu, Fe, K, Mg, Mn, P and Zn. A further three, Mo, Ni and Se are considered significant micronutrients. Estimation of 'bioavailability' from MMI® analysis gives results comparable with standard agricultural measurements for many nutrients. Percentage 'bioavailability', operationally defined here as the ratio of MMI® concentration to total element concentration, has been investigated and ranges from 31% for Se to 0.1% for Fe. Smoothed (kriged) colour raster maps for continental Australia have been produced for these 11 nutrients and interpreted in terms of lithology (e.g. presence of carbonates in the MMI® Ca map), mineralization (e.g. known mineral districts in the Cu and Zn maps), environmental processes (e.g. salinity in K map, weathering and acid generation in Fe map) and agricultural practices (e.g. application of fertilizers in the MMI® P map). This first application of a partial extraction technique at the scale of a continent has yielded meaningful, coherent and interpretable results. © 2012 AAG/Geological Society of London.

Banuta M.,SGS Canada | Tarquini I.,SGS Canada
Journal of Failure Analysis and Prevention | Year: 2010

Three basic modes of failure are known for oil tanks: manufacturing defects, mechanical damage, and corrosion. Most of the tanks currently in use and manufactured in or prior to the 90s, are subject to leaking caused by internal corrosion. Corrosion-induced leakage always results in environmental damage by underground and/or aboveground oil contamination. Considering the costs related to decontamination and to replacement of residential tanks, the possibility of corrosion should be carefully addressed. To accomplish this task, the most common issues related to tank corrosion must be recognized and understood. This article is an overview of the corrosion mechanisms in aboveground residential tanks made of non-coated mild steel. © ASM International 2010.

Discover hidden collaborations