Ringwood, Australia
Ringwood, Australia

Time filter

Source Type

Asl-Hariri S.,University of Waterloo | Gomez-Rios G.A.,University of Waterloo | Gionfriddo E.,University of Waterloo | Gionfriddo E.,University of Calabria | And 3 more authors.
Analytical Chemistry | Year: 2014

This study presents a thorough evaluation of new prototypes of extended tip needle trap devices (NT), as well as their application to in situ sampling of biological emissions and active/passive on-site sampling of indoor air. A new NT prototype was constructed with a side hole above the sorbent and an extended tip that fits inside the restriction of the narrow neck liner to increase desorption efficiency. New prototype needles were initially packed with divinylbenzene particles at SGE Analytical Science for the purpose of studying biogenic emissions of pine trees. Prior to their final application, they were evaluated in terms of robustness after multiple use (n > 10), as well as amount extracted of volatile organic compounds (VOCs). An ANOVA test for all the probes showed that at a 95% level of confidence, there were not statistical differences observed among the 9 NTs tested. In addition, the needles were also packed in laboratory with synthesized highly cross-linked PDMS as a frit to immobilize carboxen (Car) particles for spot sampling. For passive sampling, the needles were packed with Car particles embedded in PDMS to simplify calculations in passive mode. The use of NTs as spot samplers, as well as a passive sampler under controlled conditions in the laboratoryyielded a relative standard deviation of less than 15%. Finally, a new, reusable and readily deployable penlike diffusive sampler for needle traps (PDS-NT) was built and tested. Application of the PDS-NT in combination with NT-spot sampling toward the analysis of indoor air in a polymer synthesis laboratory showed good agreement between both techniques for the analyte studied, yielding averages of 0.03 and 0.025 ng/mL of toluene, respectively. © 2014 American Chemical Society.


Patent
SGE ANALYTICAL science PTY LTD | Date: 2010-07-01

An apparatus for manipulating the trajectories of moving charged particles. The apparatus includes a grid of laterally spaced side by side elongate elements and means defining a path for charged particles to traverse the grid. The grid is supported and configured for application of a voltage gradient between and/or along the elongate elements, whereby to manipulate the trajectories of charged particles that traverse the grid. A method of manipulating the trajectories of moving charged particles is also disclosed.


Patent
SGE ANALYTICAL science PTY LTD | Date: 2010-07-06

An apparatus 10 for manipulating the trajectories of moving charged particles. The apparatus includes a grid 14 of laterally spaced side by side elongate elements 16 and means 18 defining a path for charged particles to traverse the grid. The grid is supported and configured for application of a voltage gradient between and/or along the elongate elements, whereby to manipulate the trajectories of charged particles that traverse the grid. A method of manipulating the trajectories of moving charged particles is also disclosed.


Patent
Sge Analytical Science Pty Ltd | Date: 2012-02-09

A ferrule arrangement for use in sealing connections to gas chromatography columns includes a generally tubular metal ferrule with an axial bore to receive a fracturable column with a protective coating. The ferrule has a forward part that tapers to a tip region of the ferrule. A generally tubular former has a socket portion to receive the ferrule and further has an internal conical surface that, after such receipt, engages the forward part of the ferrule. A portion is provided on either or both of said ferrule and the former by which the ferrule and former may be directly or indirectly relatively moved together by application of finger force. The taper and the internal conical surface exhibit relative taper angles and the tip region of the ferrule is sufficiently radially thin whereby the application of finger force (i) is adequate to move the ferrule axially into the former to cause the conical surface to engage the tip region of the ferrule and to deform the tip region into sealing engagement with the protective coating of the column, but (ii) does not break the column.

Loading SGE Analytical Science Pty collaborators
Loading SGE Analytical Science Pty collaborators