Time filter

Source Type

Sharma V.,Sevadal Mahila Mahavidyalaya and Research Academy | Sharma R.,NEERI | Satyanarayan S.,NEERI
Toxicological and Environmental Chemistry

Studies concerning bioaccumulation kinetics and bioconcentration factor (BCF) of heavy metals like zinc (Zn), lead (Pb), chromium (Cr), cadmium (Cd), and copper (Cu) in earthworm Eudrilus eugeniae tissues including integument, gizzard, clitellum, and head region were undertaken. Calculated BCF, predicted Kow, and predicted Koc showed a significant correlation between heavy metals in different earthworm tissues, in substrate spiked with heavy metals. The regression coefficient (r2) between heavy metal uptake concentration and exposure time varied between 0.73 and 0.99, indicating significant correlation. The Koc was a maximum of 13.9016 in case of Cu and integument at an exposure time of 100 days and a minimum of 0.1114 in case of Cr with respect to head at the same exposure time. Earthworms accumulated heavy metals following chronic exposure to municipal solid waste containing heavy metals. BCF and uptake rate kinetics of heavy metals were calculated and showed increased values in head tissue followed by integument. © 2011 Taylor & Francis. Source

Sharma V.,Sevadal Mahila Mahavidyalaya and Research Academy | Chaudhari P.R.,Plot 21 | Satyanarayan S.,Sevadal Mahila Mahavidyalaya and Research Academy
Water Science and Technology

Metals are found in free and also in combined forms. In order to get information on the effect of free forms of heavy metals on earthworms the aqueous extracts of metals were tested on earthworms both in individual form and also in combined form. Different concentrations, i.e. 1 ppm, 5 ppm, and 10 ppm, were selected arbitrarily and were used in the experiments. Metals like copper, cadmium, chromium, zinc and lead were used. Earthworms' Eudrillus eugeniae activity, i.e. their response to the toxicity of metals, was monitored continuously for 5 h. It can be concluded that free form/ionic form/dissolved form of heavy metals are more toxic for earthworms, concurrent with findings of workers who have drawn same inference during studies on aquatic organisms. Earthworms can serve as biomarkers for wastewater and sludge treatment studies as they have shown typical adverse body reactions and symptoms altogether different in reaction to each of the metals during aqueous medium studies. It can be inferred that, if earthworms are utilised for treating wastewater and sludges containing these five heavy metals, one can ascertain the presence of individual metal concentrations in the wastewaters and sludges by studying the typical body reactions of earthworms during the treatment. © IWA Publishing 2011. Source

Sharma V.J.,Sevadal Mahila Mahavidyalaya and Research Academy | Satyanarayan S.,Sevadal Mahila Mahavidyalaya and Research Academy
Environmental Monitoring and Assessment

Laboratory-scale experiments were conducted to determine the effect of heavy metals viz. copper (Cu), cadmium (Cd), chromium (Cr), lead (Pb), and zinc (Zn) on the different vital tissues of earthworm Eudrillus eugeniae such as head, gizzard, clitellum, and intestine after the worms were placed in municipal solid waste (MSW) substrate spiked with heavy metals in the concentration range of 0.05 g/kg to 1.0 g/kg of the waste for Cu, Cr, PB, and Zn and 0.05 g/kg for Cd. The experiments were conducted for 100 days with periodic observations and sample collection for investigation after every 10th day. Copper and lead metals were found to cause more deleterious effect in head, gizzard, and intestine. Chromium metal caused cellular damage to the intestinal region. In comparison, cadmium metal severity was more than copper, lead, and chromium metal. Zinc metal did not show deleterious effect on tissues. In general, earthworms can be used as biomarkers in toxicity studies related to heavy metals at cellular levels. © 2010 Springer Science+Business Media B.V. Source

Discover hidden collaborations