Porto Alegre, Brazil
Porto Alegre, Brazil

Time filter

Source Type

PubMed | Federal University of Pelotas, University of Maryland, Baltimore, Servico de Genetica Medica and Federal University of Rio Grande do Sul
Type: Journal Article | Journal: American journal of medical genetics. Part A | Year: 2015

Intellectual disability affects approximately 1-3% of the population and can be caused by genetic and environmental factors. Although many studies have investigated the etiology of intellectual disability in different populations, few studies have been performed in middle-income countries. The present study estimated the prevalence of genetic causes related to intellectual disability in a cohort of children from a city in south Brazil who were followed from birth. Children who showed poor performance in development and intelligence tests at the ages of 2 and 4 were included. Out of 4,231 liveborns enrolled in the cohort, 214 children fulfilled the inclusion criteria. A diagnosis was established in approximately 90% of the children evaluated. Genetic causes were determined in 31 of the children and 19 cases remained unexplained even after extensive investigation. The overall prevalence of intellectual disability in this cohort due to genetic causes was 0.82%. Because this study was nested in a cohort, there were a large number of variables related to early childhood and the likelihood of information bias was minimized by collecting information with a short recall time. This study was not influenced by selection bias, allowing identification of intellectual disability and estimation of the prevalence of genetic causes in this population, thereby increasing the possibility of providing appropriate management and/or genetic counseling.


Ribas G.S.,Federal University of Rio Grande do Sul | Biancini G.B.,Servico de Genetica Medica | Biancini G.B.,Federal University of Rio Grande do Sul | Mescka C.,Federal University of Rio Grande do Sul | And 6 more authors.
Cellular and Molecular Neurobiology | Year: 2012

Propionic (PA) and methylmalonic (MMA) acidurias are inherited disorders caused by deficiency of propionyl-CoA carboxylase and methylmalonyl-CoA mutase, respectively. Affected patients present acute metabolic crises in the neonatal period and long-term neurological deficits. Treatments of these diseases include a protein restricted diet and L-carnitine supplementation. L-Carnitine is widely used in the therapy of these diseases to prevent secondary L-carnitine deficiency and promote detoxification, and several recent in vitro and in vivo studies have reported antioxidant and antiperoxidative effects of this compound. In this study, we evaluated the oxidative stress parameters, isoprostane and di-tyrosine levels, and the antioxidant capacity, in urine from patients with PA and MMA at the diagnosis, and during treatment with L-carnitine and protein-restricted diet. We verified a significant increase of isoprostanes and di-tyrosine, as well as a significant reduction of the antioxidant capacity in urine from these patients at diagnosis, as compared to controls. Furthermore, treated patients presented a marked reduction of isoprostanes and di-tyrosine levels in relation to untreated patients. In addition, patients with higher levels of protein and lipid oxidative damage, determined by di-tyrosine and isoprostanes levels, also presented lower urinary concentrations of total and free L-carnitine. In conclusion, the present results indicate that treatment with low protein diet and L-carnitine significantly reduces urinary biomarkers of protein and lipid oxidative damage in patients with disorders of propionate metabolism and that L-carnitine supplementation may be specially involved in this protection. © Springer Science+Business Media, LLC 2011.


Ribas G.S.,Federal University of Rio Grande do Sul | Sitta A.,Servico de Genetica Medica | Sitta A.,Federal University of Rio Grande do Sul | Wajner M.,Servico de Genetica Medica | And 2 more authors.
Cellular and Molecular Neurobiology | Year: 2011

Phenylketonuria (PKU) is an inborn error of amino acid metabolism caused by severe deficiency of phenylalanine hydroxylase activity, leading to the accumulation of phenylalanine and its metabolites in blood and tissues of affected patients. Phenylketonuric patients present as the major clinical feature mental retardation, whose pathomechanisms are poorly understood. In recent years, mounting evidence has emerged indicating that oxidative stress is possibly involved in the pathology of PKU. This article addresses some of the recent developments obtained from animal studies and from phenylketonuric patients indicating that oxidative stress may represent an important element in the pathophysiology of PKU. Several studies have shown that enzymatic and non-enzymatic antioxidant defenses are decreased in plasma and erythrocytes of PKU patients, which may be due to an increased free radical generation or secondary to the deprivation of micronutrients which are essential for these defenses. Indeed, markers of lipid, protein, and DNA oxidative damage have been reported in PKU patients, implying that reactive species production is increased in this disorder. A considerable set of data from in vitro and in vivo animal studies have shown that phenylalanine and/or its metabolites elicit reactive species in brain rodent. These findings point to a disruption of pro-oxidant/antioxidant balance in PKU. Considering that the brain is particularly vulnerable to oxidative attack, it is presumed that the administration of appropriate antioxidants as adjuvant agents, in addition to the usual treatment based on restricted diets or supplementation of tetrahydrobiopterin, may represent another step in the prevention of the neurological damage in PKU. © 2011 Springer Science+Business Media, LLC.


Ribas G.S.,Federal University of Rio Grande do Sul | Manfredini V.,Federal University of Rio Grande do Sul | de Mari J.F.,Servico de Genetica Medica | Wayhs C.Y.,Federal University of Rio Grande do Sul | And 6 more authors.
International Journal of Developmental Neuroscience | Year: 2010

Disorders of propionate metabolism are autosomal recessive diseases clinically characterized by acute metabolic crises in the neonatal period and long-term neurological deficits whose pathophysiology is not completely established. There are increasing evidences demonstrating antioxidant properties for l-carnitine, which is used in the treatment of propionic and methylmalonic acidemias to increase the excretion of organic acids accumulated in tissues and biological fluids of the affected patients. In this work we aimed to evaluate lipid (malondialdehyde content) and protein (carbonyl formation and sulfhydryl oxidation) oxidative damage in plasma from patients with propionic and methylmalonic acidemias at the moment of diagnosis and during treatment with l-carnitine. We also correlated the parameters of oxidative damage with plasma total, free and esterified l-carnitine levels. We found a significant increase of malondialdehyde and carbonyl groups, as well as a reduction of sulfhydryl groups in plasma of these patients at diagnosis compared to controls. Furthermore, patients under treatment presented a marked reduction of the content of protein carbonyl groups, similar to controls, and malondialdehyde content in relation to patients at diagnosis. In addition, plasma total and free l-carnitine concentrations were negatively correlated with malondialdehyde levels. Taken together, the present data indicate that treatment significantly reduces oxidative damage in patients affected by disorders of propionate metabolism and that l-carnitine supplementation may be involved in this protection. © 2010 ISDN.


Donida B.,Federal University of Rio Grande do Sul | Marchetti D.P.,Federal University of Rio Grande do Sul | Biancini G.B.,Federal University of Rio Grande do Sul | Deon M.,Federal University of Rio Grande do Sul | And 10 more authors.
Biochimica et Biophysica Acta - Molecular Basis of Disease | Year: 2015

Mucopolysaccharidosis type IVA (MPS IVA) is an inborn error of glycosaminoglycan (GAG) catabolism due to the deficient activity of N-acetylgalactosamine-6-sulfate sulfatase that leads to accumulation of the keratan sulfate and chondroitin 6-sulfate in body fluids and in lysosomes. The pathophysiology of this lysosomal storage disorder is not completely understood. The aim of this study was to investigate oxidative stress parameters, pro-inflammatory cytokine and GAG levels in MPS IVA patients. We analyzed urine and blood samples from patients under ERT (n=. 17) and healthy age-matched controls (n=. 10-15). Patients presented a reduction of antioxidant defense levels, assessed by a decrease in glutathione content and by an increase in superoxide dismutase activity in erythrocytes. Concerning lipid and protein damage, it was verified increased urine isoprostanes and di-tyrosine levels and decreased plasma sulfhydryl groups in MPS IVA patients compared to controls. MPS IVA patients showed higher DNA damage than control group and this damage had an oxidative origin in both pyrimidine and purine bases. Interleukin 6 was increased in patients and presented an inverse correlation with GSH levels, showing a possible link between inflammation and oxidative stress in MPS IVA disease. The data presented suggest that pro-inflammatory and pro-oxidant states occur in MPS IVA patients even under ERT. Taking these results into account, supplementation of antioxidants in combination with ERT can be a tentative therapeutic approach with the purpose of improving the patient's quality of life. To the best of our knowledge, this is the first study relating MPS IVA patients with oxidative stress. © 2015 Elsevier B.V.


Tagliari B.,Federal University of Rio Grande do Sul | Dos Santos T.M.,Federal University of Rio Grande do Sul | Cunha A.A.,Federal University of Rio Grande do Sul | Lima D.D.,Chapecó Region Community University | And 5 more authors.
Journal of Neural Transmission | Year: 2010

Depressive disorders, including major depression, are serious and disabling, whose mechanisms are not clearly understood. Since life stressors contribute in some fashion to depression, chronic variable stress (CVS) has been used as an animal model of depression. In the present study we evaluated some parameters of oxidative stress [thiobarbituric acid reactive substances (TBARS), catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx)], and inflammatory markers (interleukin 6, C reactive protein, tumor necrosis factor-alpha and nitrites), as well as the activity of butyrylcholinesterase in blood of rats subjected to chronic stress. Homocysteine and folate levels also were measured. Stressed animals were submitted to different mild stressors for 40 days. After CVS, a reduction in weight gain was observed in the stressed group, as well as an increase in immobility time in the forced swimming test as compared with controls. Stressed animals presented a significant increase on TBARS and SOD/CAT ratio, but stress did not alter GPx activity and any inflammatory parameters studied. CVS caused a significant inhibition on serum butyrylcholinesterase activity. Stressed rats had higher plasmatic levels of homocysteine without differences in folate levels. Although it is difficult to extrapolate our findings to the human condition, the alterations observed in this work may be useful to help to understand, at least in part, the pathophysiology of depressive disorders. © 2010 Springer-Verlag.


PubMed | Federal University of Health Sciences, Porto Alegre, Servico de Genetica Medica and Federal University of Rio Grande do Sul
Type: Journal Article | Journal: Biochimica et biophysica acta | Year: 2015

Mucopolysaccharidosis type IVA (MPS IVA) is an inborn error of glycosaminoglycan (GAG) catabolism due to the deficient activity of N-acetylgalactosamine-6-sulfate sulfatase that leads to accumulation of the keratan sulfate and chondroitin 6-sulfate in body fluids and in lysosomes. The pathophysiology of this lysosomal storage disorder is not completely understood. The aim of this study was to investigate oxidative stress parameters, pro-inflammatory cytokine and GAG levels in MPS IVA patients. We analyzed urine and blood samples from patients under ERT (n=17) and healthy age-matched controls (n=10-15). Patients presented a reduction of antioxidant defense levels, assessed by a decrease in glutathione content and by an increase in superoxide dismutase activity in erythrocytes. Concerning lipid and protein damage, it was verified increased urine isoprostanes and di-tyrosine levels and decreased plasma sulfhydryl groups in MPS IVA patients compared to controls. MPS IVA patients showed higher DNA damage than control group and this damage had an oxidative origin in both pyrimidine and purine bases. Interleukin 6 was increased in patients and presented an inverse correlation with GSH levels, showing a possible link between inflammation and oxidative stress in MPS IVA disease. The data presented suggest that pro-inflammatory and pro-oxidant states occur in MPS IVA patients even under ERT. Taking these results into account, supplementation of antioxidants in combination with ERT can be a tentative therapeutic approach with the purpose of improving the patients quality of life. To the best of our knowledge, this is the first study relating MPS IVA patients with oxidative stress.


PubMed | Servico de Genetica Medica and Federal University of Rio Grande do Sul
Type: Journal Article | Journal: International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience | Year: 2015

Oxidative stress has been proposed as an important pathophysiologic feature of various inborn errors of metabolism, including phenylketonuria (PKU). Considering that there are few studies relating oxidative stress and inflammation directly in PKU disease, the aim of this study was to evaluate and correlate oxidative damage to biomolecules, antioxidant defenses, pro-inflammatory cytokines, phenylalanine (Phe) and its metabolites (phenyllactic acid--PLA and phenylacetic acid--PAA) levels in urine and plasma from patients with PKU under dietary treatment. We observed a marked increase of isoprostanes, which is a lipid peroxidation biomarker, in urine from these treated patients. Next, we demonstrated that protein oxidative damage, measured by di-tyrosine formation, was significantly increased in urine from PKU treated patients and that decreased urinary antioxidant capacity was also observed. Our findings concerning to the inflammatory cytokines interleukin-6 and interleukin-1, both significantly increased in these patients, provide evidence that the pro-inflammatory state occurs. Besides, interleukin-1 was positively correlated with isoprostanes. We observed a negative correlation between interleukin-6 and interleukin-10, an anti-inflammatory cytokine. Di-tyrosine was positively correlated with Phe, which indicates oxidative damage to proteins, as well as with PAA. These findings may suggest that the protein damage may be induced by Phe and its metabolite PAA in PKU. Our results indicate that pro-oxidant and pro-inflammatory states occur and are, in part, correlated and protein oxidation seems to be induced by Phe and PPA in PKU patients.


PubMed | Federal University of Health Sciences, Porto Alegre, Servico de Genetica Medica and Federal University of Rio Grande do Sul
Type: | Journal: International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience | Year: 2015

Toxic metabolites accumulation and oxidative stress have been associated to the pathophysiology of X-linked adrenoleukodystrophy (X-ALD), an inborn error of peroxisome metabolism. Parameters of oxidative damage to proteins and lipids in X-ALD patients were already described in literature; however, DNA injuries were not studied yet. Considering that, the aims were to investigate DNA damage by comet assay in heterozygotes and symptomatic X-ALD patients, to look for associations between DNA damage and lipid peroxidation as measured by urinary 15-F2t-isoprostane; and to evaluate the in vitro effect of N-acetyl-l-cysteine (NAC), trolox (TRO) and rosuvastatin (RSV) on DNA damage in leukocytes from symptomatic patients. Symptomatic patients presented higher DNA damage levels than those found in heterozygotes and controls; heterozygotes and controls showed similar results. In order to investigate the in vitro antioxidant effect on DNA damage, whole blood cells from symptomatic patients were incubated with NAC (1 and 2.5mM), TRO (25 and 75 M) and RSV (0.5, 2 and 5 M) before DNA damage analysis. NAC, TRO and RSV, at all tested concentrations, were all capable to reduce DNA damage in symptomatic X-ALD patients until control levels. Finally, DNA damage correlated with urinary isoprostanes and plasmatic levels of TBA-RS and DCFH-DA, allowing to hypothesize that DNA damage might be induced by lipid peroxidation in symptomatic patients. The present work yields experimental evidence that NAC, TRO and RSV reduce the in vitro DNA injury in symptomatic X-ALD patients, what may suggest that the administration of these antioxidants might be considered as an adjuvant therapy for X-ALD.


PubMed | Servico de Genetica Medica and Federal University of Rio Grande do Sul
Type: Journal Article | Journal: Biochimica et biophysica acta | Year: 2016

Mucopolysaccharidosis type II (MPS II) is a lysosomal storage disease caused by a deficient activity of iduronate-2-sulfatase, leading to abnormal accumulation of glycosaminoglycans (GAG). The main treatment for MPS II is enzyme replacement therapy (ERT). Previous studies described potential benefits of six months of ERT against oxidative stress in patients. Thus, the aim of this study was to investigate oxidative, nitrative and inflammatory biomarkers in MPS II patients submitted to long term ERT. It were analyzed urine and blood samples from patients on ERT (mean time: 5.2years) and healthy controls. Patients presented increased levels of lipid peroxidation, assessed by urinary 15-F2t-isoprostane and plasmatic thiobarbituric acid-reactive substances. Concerning to protein damage, urinary di-tyrosine (di-Tyr) was increased in patients; however, sulfhydryl and carbonyl groups in plasma were not altered. It were also verified increased levels of urinary nitrate+nitrite and plasmatic nitric oxide (NO) in MPS II patients. Pro-inflammatory cytokines IL-1 and TNF- were increased in treated patients. GAG levels were correlated to di-Tyr and nitrate+nitrite. Furthermore, IL-1 was positively correlated with TNF- and NO. Contrastingly, we did not observed alterations in erythrocyte superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase activities, in reduced glutathione content and in the plasmatic antioxidant capacity. Although some parameters were still altered in MPS II patients, these results may suggest a protective role of long-term ERT against oxidative stress, especially upon oxidative damage to protein and enzymatic and non-enzymatic defenses. Moreover, the redox imbalance observed in treated patients seems to be GAG- and pro-inflammatory cytokine-related.

Loading Servico de Genetica Medica collaborators
Loading Servico de Genetica Medica collaborators