Servicio Fisiopatogenia

Buenos Aires, Argentina

Servicio Fisiopatogenia

Buenos Aires, Argentina
SEARCH FILTERS
Time filter
Source Type

Martorelli L.,Instituto Nacional de Tecnologia Agropecuaria | Albanese A.,University of Buenos Aires | Vilte D.,Instituto Nacional de Tecnologia Agropecuaria | Cantet R.,University of Buenos Aires | And 7 more authors.
Veterinary Microbiology | Year: 2017

Problem addressed Shiga toxin-producing Escherichia coli (STEC) are a group of bacteria responsible for food-associated diseases. Clinical features include a wide range of symptoms such as diarrhea, hemorrhagic colitis and the hemolytic uremic syndrome (HUS), a life-threatening condition. Objective Our group has observed that animals naturally colonized with STEC strains of unknown serotype were not efficiently colonized with E. coli O157:H7 after experimental infection. In order to assess the basis of the interference, three STEC strains were isolated from STEC persistently-colonized healthy cattle from a dairy farm in Buenos Aires, Argentina. Methods and results The three isolated strains are E. coli O22:H8 and carry the stx1 and stx2d genes. The activatable activity of Stx2d was demonstrated in vitro. The three strains carry the adhesins iha, ehaA and lpfO113. E. coli O22:H8 formed stronger biofilms in abiotic surface than E. coli O157:H7 (eae+, stx2+) and displayed a more adherent phenotype in vitro towards HeLa cells. Furthermore, when both serotypes were cultured together O22:H8 could reduce O157:H7 adherence in vitro. When calves were intragastrically pre-challenged with 108 CFU of a mixture of the three STEC strains and two days later challenged with the same dose of the strain E. coli O157:H7 438/99, the shedding of the pathogen was significantly reduced. Conclusions These results suggest that E. coli O22:H8, a serotype rarely associated with human illness, might compete with O157:H7 at the bovine recto-anal junction, making non-O157 carrying-calves less susceptible to O157:H7 colonization and shedding of the bacteria to the environment. © 2017 Elsevier B.V.


Feng P.C.H.,College Park | Keys C.,College Park | Lacher D.,FDA | Monday S.R.,College Park | And 4 more authors.
FEMS Microbiology Letters | Year: 2010

We examined O157:non-H7 strains isolated from various sources and geographical locations and found 15/57 strains to carry eae alleles, including α, β, ε and κ/δ, suggesting that these strains may be prevalent. All strains were serologically and genetically confirmed to be O157, but none were the H7 serotype or carried any trait virulence factors of the Escherichia coli O157:H7 serotype. Genetic H typing of the eae-positive strains showed that the α-eae-bearing strain was H45, while the β- and ε-eae strains were H16 and the κ/δ-eae strains were H39. The β- and ε-eae-bearing O157:H16 strains shared ∼90% pulsed-field gel electrophoresis (PFGE) similarity and were distinct from the other strains that had other eae alleles. Interestingly, an ε-eae O157:H16 strain isolated from meat in France shared PFGE similarity to the O157:H16 strains from water in the United States. Multilocus sequence typing showed that there is clonal diversity within the O157 serogroup, as some O157:non-H7 strains clustered with EPEC clonal groups, while others clustered within the ST-171 group of diverse strains and serotypes that had not previously included any strains from the O157 serogroup. Clonal analysis also showed that none of the eae-positive O157:non-H7 strains we examined were closely related to the pathogenic O157:H7 serotype. © Journal compilation © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd.


Luis P.,Laboratorio Central | Isabel C.,Servicio Fisiopatogenia | Melina M.,Laboratorio Central | Elizabeth M.,Servicio Fisiopatogenia | And 6 more authors.
International Journal of Medical Microbiology | Year: 2014

Shiga toxin-producing Escherichia coli (STEC) are important food-borne pathogens associated with cases of diarrhea, hemorrhagic colitis and hemolytic uremic syndrome (HUS). E. coli O157:H7 is the dominant serotype in Argentina and also in Neuquén Province, in which HUS incidence is above the national average, with a maximum of 28.6 cases per 100,000 children less than 5 years old reported in 1998. The aim of this study was to characterize a collection of 70 STEC O157 strains isolated from patients with diarrhea and HUS treated in the province of Neuquén, Argentina, between 1998 and 2011. All strains harbored eae, ehxA, rfbO157, and fliCH7 genes, and stx2a/stx2c (78.7%) was the predominant genotype. A total of 64 (91.4%) STEC O157 strains belonged to the hypervirulent clade 8 tested using both 4 and 32 SNP typing schemes. The strains showed the highest values reported in the literature for 6 of the 7 virulence determinants described in the TW14359 O157 strain associated with the raw spinach outbreak in the U.S. in 2006. Clade 8 strains were strongly associated with two of them: ECSP_3286, factor encoding an outer membrane protein that facilitates the transport of the heme complex (P=0.001), and in particular extracellular factor ECSP_2870/2872, coding proteins related to adaptation to plant hosts (P=0.000004). The q933 allele, which has been related to high toxin production, was present in 97.1% of the strains studied for the anti-terminator Q gene. In summary, this study describes, for the first time in Argentina, the almost exclusive circulation of strains belonging to the hypervirulent clade 8, and also the presence of putative virulence factors in higher frequencies than those reported worldwide. These data may help to understand the causes of the particular epidemiological situation related to HUS in Neuquén Province. © 2014 Elsevier GmbH.


Pianciola L.,Laboratorio Central | D'Astek B.A.,Servicio Fisiopatogenia | Mazzeo M.,Laboratorio Central | Chinen I.,Servicio Fisiopatogenia | And 2 more authors.
International Journal of Medical Microbiology | Year: 2016

Shiga toxin-producing Escherichia coli (STEC) are important food-borne pathogens associated with human diseases. In Argentina, O157:H7 is the dominant serotype in hemolytic uremic syndrome (HUS) cases. Previously, we have described the almost exclusive circulation of human E. coli O157 strains belonging to the hypervirulent clade 8 in Neuquén Province. The aim of the present study was to investigate, by a broad molecular characterization, if this particular distribution of E. coli O157 clades in Neuquén is similar to the situation in other regions of the country and if it may be originated in a similar profile in cattle, its main reservoir. Two-hundred and eighty O157 strains (54 bovine and 226 human) isolated between 2006 and 2008 in different regions of Argentina were studied. All strains harbored rfb O157, fliC H7, eae, and ehxA genes. The predominant genotype was stx 2a/stx 2c in human (76.1%) and bovine (55.5%) strains. All human isolates tested by Lineage-Specific Polymorphism Assay (LSPA-6), were lineage I/II; among bovine strains, 94.1% belonged to lineage I/II and 5.9% to lineage I. No LSPA-6 lineage II isolates were detected. Single nucleotide polymorphism (SNP) analysis has revealed the existence of nine clade phylogenetic groups. In our clinical strains collection, 87.6% belonged to the hypervirulent clade 8, and 12.4% were classified as clade 4/5. In bovine isolates, 59.3% strains were clade 8, 33.3% clade 4/5 and 7.4% clade 3. More than 80% of human strains showed the presence of 6 of the 7 virulence determinants described in the TW14359 O157 strain associated with the raw spinach outbreak in the U.S. in 2006. More than 80% of bovine strains showed the presence of 3 of these factors. The q 933 allele, which has been related to high toxin production, was present in 98.2% of clinical strains and 75.9% of the bovine isolates. The molecular characterization of human STEC O157 strains allows us to conclude that the particular situation previously described for Neuquén Province, may actually be a characteristic of the whole country. These genetic features are quite similar to those observed in the bovine reservoir and may be derived from it. This data confirms that, unlike the rest of the world, in Argentina most of the STEC O157 strains present in cattle may cause human infections of varying severity and the marked virulence described for these strains may be related to the high incidence of HUS in our country. © 2016 Elsevier GmbH.


PubMed | National University of Tucuman, Direccion de Ganaderia de la Provincia de Tucuman and Servicio Fisiopatogenia
Type: Journal Article | Journal: Revista Argentina de microbiologia | Year: 2015

Escherichia coli O157 is an emergent pathogen associated with diarrhea, hemorrhagic colitis and hemolytic uremic syndrome. Meat products constitute an important transmission source of this microorganism. The aims of this study were to characterize E. coli O157 isolated from cattle and meat products collected from abattoirs and retail stores, to establish the clonal relatedness among regional isolates and to compare them with those in the national database. Between 2004 and 2013, 169 minced meat, 35 sausage and 216 carcass samples were analyzed. Thirteen E. coli O157 isolates were identified; 6 of which were O157:H7 and characterized as stx2c(vh-a)/eae/ehxA (n = 5) and stx2/eae/ehxA (n = 1). The 7 remaining isolates were non-toxigenic E. coli strains, and serotyped as O157:NT (n = 4), O157:NM (n = 1), O157:ND (n = 1) and O157:H16 (n = 1). The strains yielded different XbaI-PFGE patterns. Compared to the E. coli O157 isolates in the National Database, none of these patterns have been previously detected in strains of different origin in Argentina.


PubMed | Instituto Nacional de Tecnologia Agropecuaria, Laboratorio Central and Servicio Fisiopatogenia
Type: Journal Article | Journal: International journal of medical microbiology : IJMM | Year: 2016

Shiga toxin-producing Escherichia coli (STEC) are important food-borne pathogens associated with human diseases. In Argentina, O157:H7 is the dominant serotype in hemolytic uremic syndrome (HUS) cases. Previously, we have described the almost exclusive circulation of human E. coli O157 strains belonging to the hypervirulent clade 8 in Neuqun Province. The aim of the present study was to investigate, by a broad molecular characterization, if this particular distribution of E. coli O157 clades in Neuqun is similar to the situation in other regions of the country and if it may be originated in a similar profile in cattle, its main reservoir. Two-hundred and eighty O157 strains (54 bovine and 226 human) isolated between 2006 and 2008 in different regions of Argentina were studied. All strains harbored rfbO157, fliCH7, eae, and ehxA genes. The predominant genotype was stx2a/stx2c in human (76.1%) and bovine (55.5%) strains. All human isolates tested by Lineage-Specific Polymorphism Assay (LSPA-6), were lineage I/II; among bovine strains, 94.1% belonged to lineage I/II and 5.9% to lineage I. No LSPA-6 lineage II isolates were detected. Single nucleotide polymorphism (SNP) analysis has revealed the existence of nine clade phylogenetic groups. In our clinical strains collection, 87.6% belonged to the hypervirulent clade 8, and 12.4% were classified as clade 4/5. In bovine isolates, 59.3% strains were clade 8, 33.3% clade 4/5 and 7.4% clade 3. More than 80% of human strains showed the presence of 6 of the 7 virulence determinants described in the TW14359 O157 strain associated with the raw spinach outbreak in the U.S. in 2006. More than 80% of bovine strains showed the presence of 3 of these factors. The q933 allele, which has been related to high toxin production, was present in 98.2% of clinical strains and 75.9% of the bovine isolates. The molecular characterization of human STEC O157 strains allows us to conclude that the particular situation previously described for Neuqun Province, may actually be a characteristic of the whole country. These genetic features are quite similar to those observed in the bovine reservoir and may be derived from it. This data confirms that, unlike the rest of the world, in Argentina most of the STEC O157 strains present in cattle may cause human infections of varying severity and the marked virulence described for these strains may be related to the high incidence of HUS in our country.


Miko A.,Federal Institute for Risk Assessment BfR Berlin | Rivas M.,Servicio Fisiopatogenia | Bentancor A.,University of Buenos Aires | Delannoy S.,French Agency for Food | And 2 more authors.
Frontiers in cellular and infection microbiology | Year: 2014

More than 400 serotypes of Shiga toxin-producing Escherichia coli (STEC) have been implicated in outbreaks and sporadic human diseases. In recent years STEC strains belonging to serogroup O178 have been commonly isolated from cattle and food of bovine origin in South America and Europe. In order to explore the significance of these STEC strains as potential human pathogens, 74 German and Argentinean E. coli O178 strains from animals, food and humans were characterized phenotypically and investigated for their serotypes, stx-genotypes and 43 virulence-associated markers by a real-time PCR-microarray. The majority (n = 66) of the O178 strains belonged to serotype O178:H19. The remaining strains divided into O178:H7 (n = 6), O178:H10 (n = 1), and O178:H16 (n = 1). STEC O178:H19 strains were mainly isolated from cattle and food of bovine origin, but one strain was from a patient with hemolytic uremic syndrome (HUS). Genotyping of the STEC O178:H19 strains by pulsed-field gel electrophoresis revealed two major clusters of genetically highly related strains which differ in their stx-genotypes and non-Stx putative virulence traits, including adhesins, toxins, and serine-proteases. Cluster A-strains including the HUS-strain (n = 35) carried genes associated with severe disease in humans (stx2a, stx2d, ehxA, saa, subAB1, lpfAO113 , terE combined with stx1a, espP, iha). Cluster B-strains (n = 26) showed a limited repertoire of virulence genes (stx2c, pagC, lpfAO113 , espP, iha). Among O178:H7 strains isolated from deer meat and patients with uncomplicated disease a new STEC variant was detected that is associated with the genotype stx1c/stx2b/ehxA/subAB2/espI/[terE]/espP/iha. None of the STEC O178 strains was positive for locus of enterocyte effacement (LEE)- and nle-genes. Results indicate that STEC O178:H19 strains belong to the growing group of LEE-negative STEC that should be considered with respect to their potential to cause diseases in humans.


PubMed | French Agency for Food, University of Buenos Aires, Federal Institute for Risk Assessment BfR Berlin and Servicio Fisiopatogenia
Type: | Journal: Frontiers in cellular and infection microbiology | Year: 2014

More than 400 serotypes of Shiga toxin-producing Escherichia coli (STEC) have been implicated in outbreaks and sporadic human diseases. In recent years STEC strains belonging to serogroup O178 have been commonly isolated from cattle and food of bovine origin in South America and Europe. In order to explore the significance of these STEC strains as potential human pathogens, 74 German and Argentinean E. coli O178 strains from animals, food and humans were characterized phenotypically and investigated for their serotypes, stx-genotypes and 43 virulence-associated markers by a real-time PCR-microarray. The majority (n = 66) of the O178 strains belonged to serotype O178:H19. The remaining strains divided into O178:H7 (n = 6), O178:H10 (n = 1), and O178:H16 (n = 1). STEC O178:H19 strains were mainly isolated from cattle and food of bovine origin, but one strain was from a patient with hemolytic uremic syndrome (HUS). Genotyping of the STEC O178:H19 strains by pulsed-field gel electrophoresis revealed two major clusters of genetically highly related strains which differ in their stx-genotypes and non-Stx putative virulence traits, including adhesins, toxins, and serine-proteases. Cluster A-strains including the HUS-strain (n = 35) carried genes associated with severe disease in humans (stx2a, stx2d, ehxA, saa, subAB1, lpfAO113 , terE combined with stx1a, espP, iha). Cluster B-strains (n = 26) showed a limited repertoire of virulence genes (stx2c, pagC, lpfAO113 , espP, iha). Among O178:H7 strains isolated from deer meat and patients with uncomplicated disease a new STEC variant was detected that is associated with the genotype stx1c/stx2b/ehxA/subAB2/espI/[terE]/espP/iha. None of the STEC O178 strains was positive for locus of enterocyte effacement (LEE)- and nle-genes. Results indicate that STEC O178:H19 strains belong to the growing group of LEE-negative STEC that should be considered with respect to their potential to cause diseases in humans.


Lucero Estrada C.S.M.,National University of San Luis | Alcaraz L.E.,National University of San Luis | Satorres S.E.,National University of San Luis | Manfredi E.,Servicio Fisiopatogenia | Velazquez L.C.,National University of San Luis
Brazilian Journal of Microbiology | Year: 2013

An increase in the consumption of fruit juices and minimally processed fruits salads has been observed in recent years all over the world. In this work, the microbiological quality of artisan fruit salads was analysed. Faecal coliforms, Salmonella spp, Shigella spp, Yersinia enterocolitica and Escherichia coli O157:H7 were not detected; nevertheless, eleven strains of Staphylococcus aureus were isolated. By multiplex PCR, all isolates showed positive results for S. aureus 16S rRNA gene and 63.6% of them were positive for sea gene. Furthermore, PCR sea positive strains were able to produce the corresponding enterotoxin. Finally, the inactivation of these strains in fruit salads by nisin, lysozyme and EDTA, was studied. EDTA produced a total S. aureus growth inhibition after 60 h of incubation at a concentration of 250 mg/L. The presence of S. aureus might indicate inadequate hygiene conditions during salad elaboration; however, the enterotoxigenicity of the strains isolated in this study, highlights the risk of consumers' intoxication. EDTA could be used to inhibit the growth of S. aureus in artisan fruit salads and extend the shelf life of these products. © 2013, Sociedade Brasileira de Microbiologia.


PubMed | Servicio Fisiopatogenia
Type: Comparative Study | Journal: Foodborne pathogens and disease | Year: 2012

Shiga toxin-producing Escherichia coli (STEC) cause nonbloody (NBD) and bloody diarrhea (BD), and hemolytic uremic syndrome (HUS). Cattle have been described as their main reservoir. STEC O157:H7 is recognized as the predominant serotype in clinical infections, but much less is known about the dominant subtypes in humans and animals or their genetic relatedness. The aims of this study were to compare the STEC O157 subtypes found in sporadic human infections with those in the bovine reservoir using stx-genotyping, phage typing, and XbaI-pulsed-field gel electrophoresis (PFGE), and correlate the subtypes with the severity of clinical manifestations. The 280 STEC O157:H7 strains collected included in this study were isolated from HUS (n=122), BD (n=69), and NBD (n=30) cases, and healthy carriers (n=5), and from bovines (n=54) in the abattoirs. The stx-genotyping showed that stx/stx(2c(vh-a)) was predominant in human (76.1%) and in bovine strains (55.5%), whereas the second more important genotype was stx (20.8%) in human and stx(2c(vh-a)) (16.7%) in cattle strains. In human strains, PT4 (37.6%), PT49 (24.3%), and PT2 (18.6%) were the most frequent PTs (80.5%). In bovine isolates, PT2 (26%), PT39 (16.7%), and PT4 and PT49 (11.1% each) were predominant. By XbaI-PFGE, all 280 strains yielded 148 patterns with 75% similarity, and 169 strains were grouped in 37 clusters. Identical PT-PFGE-stx profile combinations were detected in strains of both origins: PT4-AREXH01.0011-stx/stx(2c(vh-a)) (12 humans and one bovine), PT4-AREXH01.0543-stx/stx(2c(vh-a)) (one human and four bovines), PT2-AREXH01.0076-stx/stx(2c(vh-a)) (one human and four bovines), PT49-AREXH01.0175-stx/stx(2c(vh-a)) (seven humans and one bovine), and PT49-AREXH01.0022-stx/stx(2c(vh-a)) (seven humans and one bovine). No correlation was found among the stx-genotypes, the phage type, and the clinical symptoms.

Loading Servicio Fisiopatogenia collaborators
Loading Servicio Fisiopatogenia collaborators