Time filter

Source Type

Jeru I.,French Institute of Health and Medical Research | Jeru I.,University Pierre and Marie Curie | Hentgen V.,Center Hospitalier Of Versailles | Cochet E.,Service de Genetique et dEmbryologie medicales | And 11 more authors.
PLoS ONE | Year: 2013

Background:Familial Mediterranean fever (FMF) is an autosomal recessive autoinflammatory disorder due to MEFV mutations and one of the most frequent Mediterranean genetic diseases. The observation of many heterozygous patients in whom a second mutated allele was excluded led to the proposal that heterozygosity could be causal. However, heterozygosity might be coincidental in many patients due to the very high rate of mutations in Mediterranean populations.Objective:To better delineate the pathogenicity of heterozygosity in order to improve genetic counselling and disease management.Methods:Complementary statistical approaches were used: estimation of FMF prevalence at population levels, genotype comparison in siblings from 63 familial forms, and genotype study in 557 patients from four Mediterranean populations.Results:At the population level, we did not observe any contribution of heterozygosity to disease prevalence. In affected siblings of patients carrying two MEFV mutations, 92% carry two mutated alleles, whereas 4% are heterozygous with typical FMF diagnosis. We demonstrated statistically that patients are more likely to be heterozygous than healthy individuals, as shown by the higher ratio heterozygous carriers/non carriers in patients (p<10-7-p<0.003). The risk for heterozygotes to develop FMF was estimated between 2.1×10-3 and 5.8×10-3 and the relative risk, as compared to non carriers, between 6.3 and 8.1.Conclusions:This is the first statistical demonstration that heterozygosity is not responsible for classical Mendelian FMF per se, but constitutes a susceptibility factor for clinically-similar multifactorial forms of the disease. We also provide a first estimate of the risk for heterozygotes to develop FMF. © 2013 Jéru et al.


Jeru I.,French Institute of Health and Medical Research | Jeru I.,University Pierre and Marie Curie | Charmion S.,Jean Monnet University | Cochet E.,Service de Genetique et dEmbryologie medicales | And 15 more authors.
PLoS ONE | Year: 2013

Objectives:TNFRSF1A is involved in an autosomal dominant autoinflammatory disorder called TNFR-associated periodic syndrome (TRAPS). Most TNFRSF1A mutations are missense changes and, apart from those affecting conserved cysteines, their deleterious effect remains often questionable. This is especially true for the frequent R92Q mutation, which might not be responsible for TRAPS per se but represents a susceptibility factor to multifactorial inflammatory disorders. This study investigates TRAPS pathophysiology in a family exceptional by its size (13 members) and compares the consequences of several mutations affecting arginine 92.Methods:TNFRSF1A screening was performed by PCR-sequencing. Comparison of the 3-dimensional structure and electrostatic properties of wild-type and mutated TNFR1 proteins was performed by in silico homology modeling. TNFR1 expression was assessed by FACS analysis, western blotting and ELISA in lysates and supernatants of HEK293T cells transiently expressing wild-type and mutated TNFR1.Results:A TNFRSF1A heterozygous missense mutation, R92W (c.361C>T), was shown to perfectly segregate with typical TRAPS manifestations within the family investigated (p<5.10-4). It was associated with very high disease penetrance (0.9). Prediction of its impact on the protein structure revealed local conformational changes and alterations of the receptor electrostatic properties. R92W also impairs the TNFR1 expression at the cell surface and the levels of soluble receptor. Similar results were obtained with R92P, another mutation previously identified in a very small familial form with incomplete penetrance and variable expressivity. In contrast, TNFR1-R92Q behaves like the wild-type receptor.Conclusions:These data demonstrate the pathogenicity of a mutation affecting arginine 92, a residue whose involvement in inflammatory disorders is deeply debated. Combined with previous reports on arginine 92 mutations, this study discloses an unusual situation in which different amino acid substitutions at the same position in the protein are associated with a clinical spectrum bridging Mendelian to multifactorial conditions. © 2013 Jéru et al.


PubMed | Nancy University Hospital Center, University of Pennsylvania, Service de Genetique et dEmbryologie Medicales and University Pierre and Marie Curie
Type: Journal Article | Journal: Human molecular genetics | Year: 2016

POU1F1, a pituitary-specific POU-homeo domain transcription factor, plays an essential role in the specification of the somatotroph, lactotroph and thyrotroph lineages and in the activation of GH1, PRL and TSH transcription. Individuals with mutations in POU1F1 present with combined deficiency of GH, PRL and TSH. Here, we identified a heterozygous missense mutation with evidence of pathogenicity, at the POU1F1 locus, in a large family in which an isolated growth hormone deficiency segregates as an autosomal dominant trait. The corresponding p.Pro76Leu mutation maps to a conserved site within the POU1F1 transactivation domain. Bandshift assays revealed that the mutation alters wild-type POU1F1 binding to cognate sites within the hGH-LCR and hGH1 promoter, but not to sites within the PRL promoter, and it selectively increases binding affinity to sites within the hGH-LCR. Co-immunoprecipitation studies reveal that this substitution enhances interactions of POU1F1 with three of its cofactors, PITX1, LHX3a and ELK1, and that residue 76 plays a critical role in these interactions. The insertion of the mutation at the mouse Pou1f1 locus results in a dramatic loss of protein expression despite normal mRNA concentrations. Mice heterozygous for the p.Pro76Leu mutation were phenotypically normal while homozygotes demonstrated a dwarf phenotype. Overall, this study unveils the involvement of POU1F1 in dominantly inherited isolated GH deficiency and demonstrates a significant impact of the Pro76Leu mutation on DNA-binding activities, alterations in transactivating functions and interactions with cofactors. Our data further highlight difficulties in modeling human genetic disorders in the mouse despite apparent conservation of gene expression pathways and physiologic functions.


Sobrier M.-L.,University Pierre and Marie Curie | Tsai Y.-C.,University of Pennsylvania | Perez C.,University Pierre and Marie Curie | Leheup B.,Nancy University Hospital Center | And 9 more authors.
Human Molecular Genetics | Year: 2016

POU1F1, a pituitary-specific POU-homeo domain transcription factor, plays an essential role in the specification of the somatotroph, lactotroph and thyrotroph lineages and in the activation of GH1, PRL and TSHβ transcription. Individuals with mutations in POU1F1 present with combined deficiency of GH, PRL and TSH. Here, we identified a heterozygous missense mutation with evidence of pathogenicity, at the POU1F1 locus, in a large family in which an isolated growth hormone deficiency segregates as an autosomal dominant trait. The corresponding p.Pro76Leu mutation maps to a conserved site within the POU1F1 transactivation domain. Bandshift assays revealed that the mutation alters wild-type POU1F1 binding to cognate sites within the hGH-LCR and hGH1 promoter, but not to sites within the PRL promoter, and it selectively increases binding affinity to sites within the hGH-LCR. Co-immunoprecipitation studies reveal that this substitution enhances interactions of POU1F1 with three of its cofactors, PITX1, LHX3a and ELK1, and that residue 76 plays a critical role in these interactions. The insertion of the mutation at the mouse Pou1f1 locus results in a dramatic loss of protein expression despite normal mRNA concentrations. Mice heterozygous for the p.Pro76Leu mutation were phenotypically normal while homozygotes demonstrated a dwarf phenotype. Overall, this study unveils the involvement of POU1F1 in dominantly inherited isolated GH deficiency and demonstrates a significant impact of the Pro76Leu mutation on DNA-binding activities, alterations in transactivating functions and interactions with cofactors. Our data further highlight difficulties in modeling human genetic disorders in the mouse despite apparent conservation of gene expression pathways and physiologic functions. © The Author 2015. Published by Oxford University Press. All rights reserved.


Putoux A.,French Institute of Health and Medical Research | Putoux A.,University of Paris Descartes | Thomas S.,French Institute of Health and Medical Research | Thomas S.,University of Paris Descartes | And 46 more authors.
Nature Genetics | Year: 2011

KIF7, the human ortholog of Drosophila Costal2, is a key component of the Hedgehog signaling pathway. Here we report mutations in KIF7 in individuals with hydrolethalus and acrocallosal syndromes, two multiple malformation disorders with overlapping features that include polydactyly, brain abnormalities and cleft palate. Consistent with a role of KIF7 in Hedgehog signaling, we show deregulation of most GLI transcription factor targets and impaired GLI3 processing in tissues from individuals with KIF7 mutations. KIF7 is also a likely contributor of alleles across the ciliopathy spectrum, as sequencing of a diverse cohort identified several missense mutations detrimental to protein function. In addition, in vivo genetic interaction studies indicated that knockdown of KIF7 could exacerbate the phenotype induced by knockdown of other ciliopathy transcripts. Our data show the role of KIF7 in human primary cilia, especially in the Hedgehog pathway through the regulation of GLI targets, and expand the clinical spectrum of ciliopathies. © 2011 Nature America, Inc. All rights reserved.


Martin C.,University of Paris Descartes | Coolen N.,University of Paris Descartes | Wu Y.,Institute Pasteur Paris | Wu Y.,French Institute of Health and Medical Research | And 14 more authors.
European Respiratory Journal | Year: 2013

Peribronchial angiogenesis may occur in cystic fibrosis and vascular endothelial growth factor (VEGF)-A regulates angiogenesis in airways. Peribronchial vascularity and VEGF-A expression were examined using immunocytochemistry and morphometric analysis in lung sections obtained in 10 cystic fibrosis patients at transplantation versus 10 control nonsmokers, and in two strains of Cftr-deficient mice versus wild-type littermates. Airway epithelial NCI-H292 cells and primary cultures of noncystic fibrosis human airway epithelial cells were treated with cystic fibrosis transmembrane conductance regulator (CFTR) inhibitors (CFTR-inh172 or PPQ-102) or transfected with a CFTR small interfering (si)RNA with or without a selective epidermal growth factor receptor tyrosine kinase inhibitor. Concentrations of VEGF-A and phosphorylated epidermal growth factor receptor were measured by ELISA. Peribronchial vascularity was increased in cystic fibrosis patients, but not in Cftr-deficient mice. VEGF-A immunostaining was localised to airway epithelium and was increased in cystic fibrosis patients and in Cftr-deficient mice. In cultured airway epithelial cells, treatment with CFTR inhibitors or transfection with CFTR siRNA induced a twofold increase in VEGF-A production. CFTR inhibitors triggered epidermal growth factor receptor phosphorylation that was required for VEGF-A synthesis. Cystic fibrosis airways at transplantation showed increased peribronchial vascularity and epithelial VEGF-A expression. CFTR dysfunction triggered epithelial synthesis of VEGF-A, which may contribute to vascular remodelling. Copyright © ERS 2013.


PubMed | Center National Of Reference Des Maladies Respiratoires Rares Respirare, Service de Pneumologie et Oncologie Thoracique, University of Paris 13, Aix - Marseille University and 4 more.
Type: Journal Article | Journal: Human molecular genetics | Year: 2016

Idiopathic interstitial pneumonias (IIPs) comprise a heterogeneous group of rare lung parenchyma disorders with high morbidity and mortality, which can occur at all ages. In adults, the most common form of IIPs, idiopathic pulmonary fibrosis (IPF), has been associated with an increased frequency of lung cancer. The molecular basis of IIPs remains unknown in most cases. This study investigates IIP pathophysiology in 12 families affected by IPF and lung cancer. We identified, in a multigenerational family, nine members carrying a heterozygous missense mutation with evidence of pathogenicity in SFTPA1 that encodes the surfactant protein (SP)-A1. The mutation (p.Trp211Arg), which segregates with a disease phenotype characterized by either isolated IIP/IPF, or IPF associated with lung adenocarcinoma, is located in the carbohydrate recognition domain (CRD) of SP-A1 and involves a residue invariant throughout evolution, not only in SP-A1, but also in its close paralog SP-A2 and other CRD-containing proteins. As shown through functional studies, the p.Trp211Arg mutation impairs SP-A1 secretion. Immunohistochemistry studies on patient alveolar epithelium showed an altered SP-A expression pattern. Overall, this first report of a germline molecular defect in SFTPA1 unveils the key role of SP-A1 in the occurrence of several chronic respiratory diseases, ranging from severe respiratory insufficiency occurring early in life to the association of lung fibrosis and cancer in adult patients. These data also clearly show that, in spite of their structural and functional similarities, SP-A1 and SP-A2 are not redundant.


Perez C.,University Pierre and Marie Curie | Dastot-Le Moal F.,Service de Genetique et dEmbryologie Medicales | Collot N.,Service de Genetique et dEmbryologie Medicales | Legendre M.,University Pierre and Marie Curie | And 4 more authors.
European Journal of Endocrinology | Year: 2012

Background: In humans, pituitary hormone deficiency may be part of a syndrome including extrapituitary defects like ocular abnormalities. Very few genes have been linked to this particular phenotype. In the mouse, Lhx2, which encodes a member of the LIM (Lin-11, Isl-1, and Mec-3) class of homeodomain proteins, was shown to be expressed during early development in the posterior pituitary, eye, and liver, and its expression persists in adulthood in the central nervous system Lhx2-/- mice display absence of posterior pituitary and intermediate lobes, malformation of the anterior lobe, anophthalmia, and they die from anemia. Methods: We tested the implication of the LHX2 gene in patients presenting pituitary hormone deficiency associated with ectopic or nonvisible posterior pituitary and developmental ocular defects. A cohort of 59 patients, including two familial cases, was studied. Direct sequencing of the LHX2 coding sequence and intron/exon boundaries was performed. LHX2 transcriptional activity on several pituitary promoters (AGSU, PRL, POU1F1, and TSHB) was tested in vitro. Results: Six heterozygous sequence variations were identified, among which two are novel missense changes (p.Ala203Thr and p.Val333Met). In vitro, LHX2 activates transcription of TSHB, PRL, and POU1F1 promoters in the HEK293 cell line. A synergistic action of POU1F1 and LHX2 was also shown on these promoters. The two missense variations were tested and no significant difference was observed, leading to the conclusion that they are not deleterious. Conclusions: These results suggest that if LHX2 is involved in pituitary hormone deficiency associated with posterior pituitary and ocular defects, it would be a rare cause of this disease condition. © 2012 European Society of Endocrinology.


Cassuto N.G.,ART Unit | Le Foll N.,Service de Genetique et dEmbryologie Medicales | Chantot-Bastaraud S.,Service de Genetique et dEmbryologie Medicales | Balet R.,Bluets Hospital | And 5 more authors.
Fertility and Sterility | Year: 2011

Objective: To evaluate whether observation of spermatozoa at ×6,100 magnification can distinguish between those with and without a balanced chromosomal content. Design: Retrospective research study. Setting: Genetics laboratory of a university hospital and in vitro fertilization center. Patient(s): Six men carrying a reciprocal translocation and three men with a Robertsonian translocation. Intervention(s): Sperm fluorescence in situ hybridization (FISH) with a specific set of three probes for each translocation for determining chromosomal content, performed on both unselected spermatozoa and on spermatozoa selected at ×6,100 magnification according to the Cassuto-Barak classification. Main Outcome Measure(s): Chromosomal content in unselected and selected spermatozoa. Result(s): Chromosomal translocations lead to gametes carrying either a balanced or an unbalanced karyotype in offspring and consequently to changes in chromosome position within sperm nucleus and potentially in nuclear morphology. In the unselected spermatozoa, the rate of chromosomally balanced nuclei ranged from 37.1% to 52.6% and from 70% to 88.6% in reciprocal and Robertsonian translocations, respectively, which is in agreement with published data. In selected spermatozoa, there was no statistically significant difference between the rates of segregation modes when compared with their frequencies in unselected sperm cells. Conclusion(s): The observation of spermatozoa at high-magnification in translocation carriers cannot be used to select sperm cells with a balanced chromosomal content. © 2011 American Society for Reproductive Medicine, Published by Elsevier Inc.


Carabalona A.,INMED | Carabalona A.,Aix - Marseille University | Carabalona A.,French Institute of Health and Medical Research | Beguin S.,INMED | And 27 more authors.
Human Molecular Genetics | Year: 2012

Periventricular nodular heterotopia (PH) is a human brain malformation caused by defective neuronal migration that results in ectopic neuronal nodules lining the lateral ventricles beneath a normal appearing cortex. Most affected patients have seizures and their cognitive level varies from normal to severely impaired. Mutations in the Filamin-A (or FLNA) gene are the main cause of PH, but the underlying pathological mechanism remains unknown. Although two FlnA knockout mouse strains have been generated, none of them showed the presence of ectopic nodules. To recapitulate the loss of FlnA function in the developing rat brain, we used an in utero RNA interference-mediated knockdown approach and successfully reproduced a PH phenotype in rats comparable with that observed in human patients. In FlnA-knockdown rats, we report that PH results from a disruption of the polarized radial glial scaffold in the ventricular zone altering progression of neural progenitors through the cell cycle and impairing migration of neurons into the cortical plate. Similar alterations of radial glia are observed in human PH brains of a 35-week fetus and a 3-month-old child, harboring distinct FLNA mutations not previously reported. Finally, juvenile FlnA-knockdown rats are highly susceptible to seizures, confirming the reliability of this novel animal model of PH. Our findings suggest that the disorganization of radial glia is the leading cause of PH pathogenesis associated with FLNA mutations.Rattus norvegicus FlnA mRNA (GenBank accession number FJ416060). © The Author 2011. Published by Oxford University Press. All rights reserved.

Loading Service de Genetique et dEmbryologie Medicales collaborators
Loading Service de Genetique et dEmbryologie Medicales collaborators