Time filter

Source Type

Hôpital-Camfrout, France

van Kuilenburg A.B.P.,Metabolic | Dobritzsch D.,Karolinska Institutet | Meijer J.,Metabolic | Meinsma R.,Metabolic | And 17 more authors.
Biochimica et Biophysica Acta - Molecular Basis of Disease | Year: 2010

Dihydropyrimidinase (DHP) is the second enzyme of the pyrimidine degradation pathway and catalyses the ring opening of 5,6-dihydrouracil and 5,6-dihydrothymine. To date, only 11 individuals have been reported suffering from a complete DHP deficiency. Here, we report on the clinical, biochemical and molecular findings of 17 newly identified DHP deficient patients as well as the analysis of the mutations in a three-dimensional framework. Patients presented mainly with neurological and gastrointestinal abnormalities and markedly elevated levels of 5,6-dihydrouracil and 5,6-dihydrothymine in plasma, cerebrospinal fluid and urine. Analysis of DPYS, encoding DHP, showed nine missense mutations, two nonsense mutations, two deletions and one splice-site mutation. Seventy-one percent of the mutations were located at exons 5-8, representing 41% of the coding sequence. Heterologous expression of 11 mutant enzymes in Escherichia coli showed that all but two missense mutations yielded mutant DHP proteins without significant activity. Only DHP enzymes containing the mutations p.R302Q and p.T343A possessed a residual activity of 3.9% and 49%, respectively. The crystal structure of human DHP indicated that the point mutations p.R490C, p.R302Q and p.V364M affect the oligomerization of the enzyme. In contrast, p.M70T, p.D81G, p.L337P and p.T343A affect regions near the di-zinc centre and the substrate binding site. The p.S379R and p.L7V mutations were likely to cause structural destabilization and protein misfolding. Four mutations were identified in multiple unrelated DHP patients, indicating that DHP deficiency may be more common than anticipated. © 2010 Elsevier B.V. Source

De Becdelievre A.,Service de biochimie genetique | De Becdelievre A.,French Institute of Health and Medical Research | De Becdelievre A.,University Paris Est Creteil | Costa C.,Service de biochimie genetique | And 20 more authors.
Human Genetics | Year: 2011

Fetal bowel anomalies may reveal cystic fibrosis (CF) and the search for CF transmembrane conductance regulator (CFTR) gene mutations is part of the diagnostic investigations in such pregnancies, according to European recommendations. We report on our 18-year experience to document comprehensive CFTR genotypes and correlations with ultrasound patterns in a series of 694 cases of fetal bowel anomalies. CFTR gene analysis was performed in a multistep process, including search for frequent mutations in the parents and subsequent in-depth search for rare mutations, depending on the context. Ultrasound patterns were correlated with the genotypes. Cases were distinguished according to whether they had been referred directly to our laboratory or after an initial testing in another laboratory. A total of 30 CF fetuses and 8 cases compatible with CFTR-related disorders were identified. CFTR rearrangements were found in 5/30 CF fetuses. 21.2% of fetuses carrying a frequent mutation had a second rare mutation, indicative of CF. The frequency of CF among fetuses with no frequent mutation was 0.43%. Correlation with ultrasound patterns revealed a significant frequency of multiple bowel anomalies in CF fetuses. The results emphasize the need to search for rearrangements in the diagnosis strategy of fetal bowel anomalies. The diagnostic value of ultrasound patterns combining hyperechogenic bowel, loop dilatation and/or non-visualized gallbladder reveals a need to revise current strategies and to offer extensive CFTR gene testing when the triad is diagnosed, even when no frequent mutation is found in the first-step analysis. © 2010 Springer-Verlag. Source

Sabbagh A.,University of Paris Descartes | Pasmant E.,University of Paris Descartes | Imbard A.,Service de Biochimie Hormonologie | Luscan A.,University of Paris Descartes | And 10 more authors.
Human Mutation | Year: 2013

Neurofibromatosis type 1 (NF1) affects about one in 3,500 people in all ethnic groups. Most NF1 patients have private loss-of-function mutations scattered along the NF1 gene. Here, we present an original NF1 investigation strategy and report a comprehensive mutation analysis of 565 unrelated patients from the NF-France Network. A NF1 mutation was identified in 546 of the 565 patients, giving a mutation detection rate of 97%. The combined cDNA/DNA approach showed that a significant proportion of NF1 missense mutations (30%) were deleterious by affecting pre-mRNA splicing. Multiplex ligation-dependent probe amplification allowed the identification of restricted rearrangements that would have been missed if only sequencing or microsatellite analysis had been performed. In four unrelated families, we identified two distinct NF1 mutations within the same family. This fortuitous association points out the need to perform an exhaustive NF1 screening in the case of molecular discordant-related patients. A genotype-phenotype study was performed in patients harboring a truncating (N = 368), in-frame splicing (N = 36), or missense (N = 35) mutation. The association analysis of these mutation types with 12 common NF1 clinical features confirmed a weak contribution of the allelic heterogeneity of the NF1 mutation to the NF1 variable expressivity. © 2013 WILEY PERIODICALS, INC. Source

Imbard A.,Service de Biochimie Hormonologie | Pasmant E.,University of Paris Descartes | Sabbagh A.,University of Paris Descartes | Luscan A.,University of Paris Descartes | And 11 more authors.
Journal of Human Genetics | Year: 2015

Neurofibromatosis type 1 (NF1) is caused by dominant loss-of-function mutations of the tumor suppressor NF1 containing 57 constitutive coding exons. A huge number of different pathogenic NF1 alterations has been reported. The aim of the present study was to evaluate the usefulness of a multiplex ligation-dependent probe amplification (MLPA) approach in NF1 patients to detect single and multi-exon NF1 gene copy number variations. A genotype-phenotype correlation was then performed in NF1 patients carrying these types of genetic alterations. Among 565 NF1 index cases from the French NF1 cohort, single and multi-exon deletions/duplications screening identified NF1 partial deletions/duplications in 22 patients (∼4%) using MLPA analysis. Eight single exon deletions, 11 multiple exons deletions, 1 complex rearrangement and 2 duplications were identified. All results were confirmed using a custom array-CGH. MLPA and custom array-CGH allowed the identification of rearrangements that were missed by cDNA/DNA sequencing or microsatellite analysis. We then performed a targeted next-generation sequencing of NF1 that allowed confirmation of all 22 rearrangements. No clear genotype-phenotype correlations were found for the most clinically significant disease features of NF1 in patients with single and multi-exons NF1 gene copy number changes. © 2015 The Japan Society of Human Genetics. Source

Chevenne D.,Service de Biochimie Hormonologie
Immuno-Analyse et Biologie Specialisee | Year: 2012

Produced by β-cells in pancreatic islets of Langerhans, the proinsulin is cleaved into insulin and C-peptide by a complex process of proteolytic conversion. However, a small amount of proinsulin escapes cleavage, partially or totally. Thus, secretion of insulin into the bloodstream is accompanied by the release of small amounts of proinsulins. The proinsulin immunoassays use various antibodies displaying different specificities. The measurement of proinsulinemia is useful for the diagnosis of insulinoma and family hyperproinsulinemia. Proinsulinemia is also associated with various β-cell disorders and insulinoresistance. © 2012 Elsevier Masson SAS. Source

Discover hidden collaborations