Paris, France

Time filter

Source Type

Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: ICT-14-2014 | Award Amount: 7.99M | Year: 2015

5G will have to cope with a high degree of heterogeneity in terms of: (a) services (mobile broadband, massive machine and mission critical communications, broad-/multicast services and vehicular communications); (b) device classes (low-end sensors to high-end tablets); (c) deployment types (macro and small cells); (d) environments (low-density to ultra-dense urban); (e) mobility levels (static to high-speed transport). Consequently, diverse and often contradicting Key Performance Indicators need to be supported, such as high capacity/user-rates, low latency, high reliability, ubiquitous coverage, high mobility, massive number of devices, low cost/energy consumption. 4G is not designed to meet such a high degree of heterogeneity efficiently. Moreover, having multiple radio access technologies for multi-service support below 6GHz will be too costly. FANTASTIC-5G will develop a new multi-service Air Interface (AI) for below 6 GHz through a modular design. To allow the system to adapt to the anticipated heterogeneity, the pursued properties are: flexibility, scalability, versatility, efficiency, future-proofness. To this end, we will develop the technical AI components (e.g. flexible waveform and frame design, scalable multiple access procedures, adaptive retransmission schemes, enhanced multi-antenna schemes with/without cooperation, advanced multi-user detection, interference coordination, support for ultra-dense cell layouts, multi-cell radio resource management, device-to-device) and integrate them into an overall AI framework where adaptation to the above described sources of heterogeneity will be accomplished. Our work will also comprise intense validation and system level simulations. FANTASTIC-5G includes partners being active in forerunning projects like METIS, 5GNOW and EMPATHIC ensuring the exploitation of the respective outcomes. The consortium possesses the main stakeholders for innovation and impacting standardization, maintaining Europe at the forefront.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: ICT-14-2014 | Award Amount: 7.99M | Year: 2015

The overall objective of Flex5Gware is to deliver highly reconfigurable hardware (HW) platforms together with HW-agnostic software (SW) platforms targeting both network elements and devices and taking into account increased capacity, reduced energy footprint, as well as scalability and modularity, to enable a smooth transition from 4G mobile wireless systems to 5G. As it will be argued in the proposal, this approach will be necessary so that 5G HW/SW platforms can meet the requirements imposed by the anticipated exponential growth in mobile data traffic (1000 fold increase) together with the large diversity of applications (from low bit-rate/power power for M2M to interactive and high resolution applications). Flex5Gware will adopt a holistic approach performing research and implementations on key building blocks of 5G (and cooperations among them) to provide versatile, flexible, reconfigurable, efficient operations for HW/SW platforms. The development of this concept entails many system design challenges that will be solved through disruptive technologies. E.g., analogue components to enable massive MIMO for mmWave, full duplex (simultaneous transmission and reception) for 5G waveforms, or reconfigurable SW architectures with interface abstractions for flexible control and management mechanisms across heterogeneous wireless devices and access networks. Flex5Gware will evaluate and demonstrate the developed 5G technologies, in terms of proofs-of-concept, which will be showcased in a demonstration event where all the partners in the consortium will participate. The Flex5Gware consortium includes large industry leaders from infrastructure providers (ALUD, EAB and NEC), semiconductor manufacturers (IMC) and network operators (TI) as well as leading research institutions and academia and is reinforced with the participation of three SMEs. This powerful consortium, together with the measures detailed in the proposal, ensure a huge impact of the Flex5Gware results.


Patent
Sequans Communications | Date: 2016-04-22

A computer implemented method for providing OTDOA timing information comprising defining an FFT window pair for estimating a value of reference signal time difference RSTD for at least one base station and a reference cell, receiving a PRS from the at least one base station and the reference cell, executing an FFT per OFDM symbol of the PRS for each FFT window of the FFT window pair, obtaining a first FFT output vector per OFDM symbol of each FFT window, for each first output vector, descrambling tones corresponding to the known position of the PRS, wherein all other tones are set to zero, combining vectors based on respective first FFT output vectors, executing an iFFT to convert to the time domain; and calculating an estimated value of reference signal time difference RSTD for the at least one base station and the reference cell.


Patent
Sequans Communications | Date: 2016-05-11

A computer implemented method of calibrating a device comprising the steps of: deriving an analytic expression for a variable to be optimised of the device in terms of at least one parameter of the device, transforming the analytic expression into polynomial form of the at least one parameter of the device, the polynomial form comprising N coefficients, capturing at least N samples of a value of the variable from the device under calibration, each sample being a result of a different independent pre-determined value of the at least one parameter, applying the captured variable values and the corresponding at least one parameter values to the polynomial form, obtaining optimal values of the at least one parameter from the applying step to calibrate the device.


Patent
Sequans Communications | Date: 2016-01-06

A method of receiving LTE data by a user device, the data being transmitted on a channel of an unlicensed band comprising the steps of receiving a cell ID from a primary LTE cell, receiving system information from the primary LTE cell for access to an unlicensed channel, receiving LTE data on the channel of an unlicensed band.


Patent
Sequans Communications | Date: 2016-06-23

A computer implemented method of providing RSTD data comprising receiving an uncertainty window centered around an expected RSTD value, determining the PDP of each reference OFDM symbol within the uncertainty window, obtaining a main PDP by calculating a parameter indicative of signal quality for each determined PDP, the main PDP having the highest signal quality, obtaining a preceding PDP of the Main PDP, obtaining a succeeding PDP of the Main PDP, determining PDP metrics comprising, determining a channel metric for each of the main, preceding and succeeding PDPs, determining a channel main tap for each of the main, preceding and succeeding PDPs, determining a delay estimate for each of the main, preceding and succeeding PDPs, wherein if the main PDP is a combined PDP, performing coherence testing on the PDP metrics to detect any ambiguity in the delay estimate of the main PDP, and correcting any ambiguity.


Patent
Sequans Communications | Date: 2016-10-26

A computer implemented method for providing OTDOA timing information comprising defining an FFT window pair of consecutive FFT windows for estimating a value of reference signal time difference RSTD for at least one base station and a reference cell, receiving a PRS from the at least one base station and the reference cell, executing an FFT per OFDM symbol of the PRS for each FFT window of the FFT window pair, obtaining a first FFT output vector per OFDM symbol of each FFT window, for each first output vector, descrambling tones corresponding to the known position of the PRS, wherein all other tones are set to zero, coherently combining vectors based on respective first FFT output vectors, executing an iFFT to convert to the time domain; and calculating an estimated value of reference signal time difference RSTD for the at least one base station and the reference cell.


Patent
Sequans Communications | Date: 2015-07-02

A method of receiving LTE data by a user device, the data being transmitted on a channel of an unlicensed band comprising the steps of receiving a cell ID from a primary LTE cell, receiving system information from the primary LTE cell for access to an unlicensed channel, receiving LTE data on the channel of an unlicensed band.


Patent
Sequans Communications | Date: 2015-09-30

A method of transmitting data comprising choosing a transmit modulation scheme of the transmission, choosing a transmit parameter of the transmission, transmitting the data stream according to the chosen transmit modulation and transmit parameter such that data of the data stream is transmitted by the modulation scheme and the choice of transmit parameter.


Patent
Sequans Communications | Date: 2015-11-04

A computer implemented method of calibrating a device comprising the steps of: deriving an analytic expression for a variable to be optimised of the device in terms of at least one parameter of the device, transforming the analytic expression into polynomial form of the at least one parameter of the device, the polynomial form comprising N coefficients, capturing at least N samples of a value of the variable from the device under calibration, each sample being a result of a different independent pre-determined value of the at least one parameter, applying the captured variable values and the corresponding at least one parameter values to the polynomial form, obtaining optimal values of the at least one parameter from the applying step to calibrate the device.

Loading Sequans Communications collaborators
Loading Sequans Communications collaborators