Amsterdam, Netherlands
Amsterdam, Netherlands
SEARCH FILTERS
Time filter
Source Type

Patent
Sensus Inc. | Date: 2015-06-24

In one aspect, the present invention provides control for a distributed lighting network, for selectively reducing an aggregate electrical load of the distributed lighting network according to a defined lighting reduction pattern. Among the several advantages of the provided control is the ability to define via the pattern which lamps are involved in load shedding, and how they are controlled to shed load. In another aspect, the present invention provides control for a distributed lighting network, for visibly signaling persons within sight of one or more lamps within the distributed lighting network. Among the several advantages of the provided control is the ability to provide emergency or other public safety signaling to persons that might not otherwise be alerted to an existing or impending danger.


Patent
Sensus Inc. | Date: 2015-06-18

According to one aspect of the teachings herein, a ball valve assembly provides a primary flow path and a secondary flow path, where the primary flow path is established by moving the valve into a defined first position and the secondary flow path is established by moving the valve into a defined second position. The secondary flow path substantially restricts fluid flow as compared to the primary flow path and may be regarded as a trickle flow path. In a non-limiting example, the ball valve assembly is used on a water service line and is operated by a utility company. The valve is placed in its first position by authorized personnel, to provide normal, full-flow water service to a residence or other structure, and is placed in its second position, to provide restricted, low-flow water service to the structure.


Patent
Sensus Inc. | Date: 2013-02-13

A method and apparatus that monitors and controls the operation of an electricity meter, and modifies at least one temperature threshold for determining when an alarm message should be transmitted or an electrical connection in the meter should be disconnected. The method and apparatus includes a plurality of sensors that detect temperatures in various locations within the electricity meter. The method and apparatus compares at least one detected temperature to at least one threshold, and operates an alarm or a switch when the detected temperature exceeds the threshold. The method and apparatus determines an average rate of change for at least one temperature according to a short-term temperature average over a first number of samples of the temperature, and a long term-term temperature average over a second number of samples of the temperature. The second number of samples is different from the first number of samples. The method and apparatus reduces the threshold when the average rate of change exceeds a predetermined amount.


The present invention comprises a method and apparatus for controlling gas flow via a gas shut-off valve assembly. In at least one embodiment, the assembly is configured to drive its shut-off valve from an open position to a closed position, in response to detecting a valve closure condition. The assembly in one or more embodiments operates as an intelligent node in an AMR network, and it interprets a received closure command as a closure condition. Additionally, or alternatively, the assembly detects abnormal operating conditions as the closure condition. Advantageously, the assembly performs initial closure verification, based on detecting movement of the valve into the closed position, and performs subsequent closure verification, based on monitoring downstream gas pressure. In the same or other embodiments, the assembly provides enhanced stand-alone reliability and safety by incorporating one or more valve clearing/cleaning routines into its operations.


The present invention comprises a method and apparatus for controlling gas flow via a gas shut-off valve assembly. In at least one embodiment, the assembly is configured to drive its shut-off valve from an open position to a closed position, in response to detecting a valve closure condition. The assembly in one or more embodiments operates as an intelligent node in an AMR network, and it interprets a received closure command as a closure condition. Additionally, or alternatively, the assembly detects abnormal operating conditions as the closure condition. Advantageously, the assembly performs initial closure verification, based on detecting movement of the valve into the closed position, and performs subsequent closure verification, based on monitoring downstream gas pressure. In the same or other embodiments, the assembly provides enhanced stand-alone reliability and safety by incorporating one or more valve clearing/cleaning routines into its operations.


A gas pressure regulator regulates a pressure of a gas system. The gas pressure regulator includes a first chamber, a first diaphragm which separates the first chamber into a first compartment and a second compartment, a second chamber, with a second diaphragm separating the second chamber into a third compartment and a fourth compartment, the fourth compartment being connected to, and in communication with, the first compartment of the first chamber. A movement of the first diaphragm causes a corresponding movement of the second diaphragm, and a change in the volume of the fourth compartment.


A phase-locked loop frequency synthesizer includes an L-state pulse width modulator configured to receive a reference frequency signal and at least one entry from a frequency table, and to output at least one N/N+1 modulus signals corresponding to the at least one entry from the frequency table. The synthesizer includes a divide by N/N+1 controllable modulus divider configured to receive the at least one N/N+1 modulus signals and to divide the output frequency signal by the at least one N/N+1 modulus signals to generate a second reference frequency signal. The synthesizer includes a phase frequency detector configured to receive the reference frequency signal and the second reference frequency signal and to generate an error signal. The synthesizer also includes a filter network configured to receive the error signal and to output a voltage; and a voltage controlled oscillator configured to receive the voltage and to generate the output frequency signal.


A method and apparatus that monitors and controls the operation of an electricity meter and prevents a failure of and/or damage to the electricity meter. A potential failure condition of an electrical connection between an electricity meter and a meter socket in an electrical line that provides power from a power supply to an electrical load through the electricity meter, is detected. A correction time may be determined based on a temperature in the vicinity of the electrical connection and a current through the electrical connection. The correction time indicates an amount of time that is available before a predicted failure of the electrical connection will occur. The method determines whether the electricity meter is in an imminent failure condition based on the correction time or the information used to detect the potential failure condition of the electrical connection. The method may provide either, or both, notification of the imminent failure condition and disconnection of power to the electrical load by operating a disconnection switch within the electricity meter when it is determined the electricity meter is in the imminent failure condition.


Patent
Sensus Inc. | Date: 2013-08-21

In one aspect, the present invention reduces electromagnetic interference (EMI) caused by a capacitive dropper power supply by synchronizing the openings and closings of a shunt switched used for regulation control of the DC output voltage generated by the power supply, to zero crossings of AC current from the current-limiting resistor disposed in series at the AC input of the power supply. In one or more other embodiments, the capacitive dropper power supply includes disconnect circuitry that senses a loss of the input AC voltage source and in response wholly or partly disconnects internal regulation control circuitry from the supplys output filter capacitor to reduce the current drawn from the filter capacitor, thereby reducing the decay rate of the DC output voltage from the filter capacitor. The contemplated power supply may also be implemented in a Bipolar, BiCMOS or CMOS process, for realization in a compact integrated circuit device.


A gas pressure regulator regulates a pressure of a gas system. The gas pressure regulator includes a first chamber, a first diaphragm which separates the first chamber into a first compartment and a second compartment, a second chamber, with a second diaphragm separating the second chamber into a third compartment and a fourth compartment, the fourth compartment being connected to, and in communication with, the first compartment of the first chamber. A movement of the first diaphragm causes a corresponding movement of the second diaphragm, and a change in the volume of the fourth compartment.

Loading Sensus Inc. collaborators
Loading Sensus Inc. collaborators