Entity

Time filter

Source Type

Germantown, MD, United States

An inductive sensor system for remote powering and communication with an analyte sensor (e.g., a fully implantable analyte sensor). The system may include an analyte sensor and transceiver. The system may be ferrite-enhanced. The transceiver may implement a passive telemetry for communicating with the analyte sensor via an inductive magnetic link for both power and data transfer. The link may be a co-planar, near field communication telemetry link. The transceiver may include a reflection plate configured to focus flux lines linking the transceiver and the sensor uniformly beneath the transceiver. The transceiver may include an amplifier configured to amplify battery power and provide radio frequency (RF) power to a transceiver antenna.


Systems, methods, and apparatuses that provide alerts based on analyte data and acceleration data. An analyte sensor may generate the analyte data. An accelerometer may generate the acceleration data. A transceiver may convert the analyte data into analyte concentration values. The transceiver may convert the acceleration data into activity information. The transceiver may generate an alert based on the analyte concentration values and activity information. The alert may be communicated to a user by a mobile medical application executed on the transceiver and/or a display device (e.g., smartphone) in communication with the transceiver. The mobile medical application may display (e.g., on a display of the display device) a plot or graph of the analyte concentration values and activity information with respect to time.


Patent
Senseonics | Date: 2014-03-14

A system for communicating with a subcutaneous sensor includes a transceiver with a flat antenna. The flat antenna may include a cross section in which the height and the width are not equal. The coils of the antenna may be mounted on a substrate, which may be flexible. The flexible substrate may allow the antenna to conform to the contours of body parts, such as arms, wrists, ankles, legs, or waists.


An analyte indicator may include a porous base and may be included in an analyte sensor. The analyte indicator may retain its physical, chemical, and optical properties in the presence of compression. The porous base may not vary in opacity. The analyte indicator may include (i) a polymer unit attached or polymerized onto or out of the porous base and (ii) an analyte sensing element attached to the polymer unit or copolymerized with the polymer unit. The analyte sensing element may include one or more indicator molecule. The analyte sensing element may include one or more indicator polymer chains. The analyte indicator may include (i) an indicator polymer chain attached or polymerized onto or out of the porous base and (ii) indicator molecules attached to the indicator polymer chain.


A multisite sensing system including two or more analyte sensors, an interface device, and a shared bus. The interface device may be configured to receive a power signal and generate power for powering the analyte sensors and to convey data signals generated by the analyte sensors. The shared bus connected to the interface device and each of the analyte sensors and configured to provide the power generated by the interface device to the analyte sensors and to provide the data signals generated by the analyte sensors to the interface device. The interface device may be an inductive element. The shared bus may be a two wire, multiplexed bus. The analyte sensors may be spatially separated for analyte sensing at least two different locations. The analyte sensors may generate data signals indicative of the presence and/or amount of the same analyte or of one or more different analytes.

Discover hidden collaborations